XHTML/MathML Entities Test

Latin-1 Characters (xhtml-lat1.ent)

decimal hexadecimal entity name &#nnn; &#xhhh; &entity;
160A0nbsp   
161A1iexcl¡¡¡
162A2cent¢¢¢
163A3pound£££
164A4curren¤¤¤
165A5yen¥¥¥
166A6brvbar¦¦¦
167A7sect§§§
168A8uml¨¨¨
169A9copy©©©
170AAordfªªª
171ABlaquo«««
172ACnot¬¬¬
173ADshy­­­
174AEreg®®®
175AFmacr¯¯¯
176B0deg°°°
177B1plusmn±±±
178B2sup2²²²
179B3sup3³³³
180B4acute´´´
181B5microµµµ
182B6para
183B7middot···
184B8cedil¸¸¸
185B9sup1¹¹¹
186BAordmººº
187BBraquo»»»
188BCfrac14¼¼¼
189BDfrac12½½½
190BEfrac34¾¾¾
191BFiquest¿¿¿
192C0AgraveÀÀÀ
193C1AacuteÁÁÁ
194C2AcircÂÂÂ
195C3AtildeÃÃÃ
196C4AumlÄÄÄ
197C5AringÅÅÅ
198C6AEligÆÆÆ
199C7CcedilÇÇÇ
200C8EgraveÈÈÈ
201C9EacuteÉÉÉ
202CAEcircÊÊÊ
203CBEumlËËË
204CCIgraveÌÌÌ
205CDIacuteÍÍÍ
206CEIcircÎÎÎ
207CFIumlÏÏÏ
208D0ETHÐÐÐ
209D1NtildeÑÑÑ
210D2OgraveÒÒÒ
211D3OacuteÓÓÓ
212D4OcircÔÔÔ
213D5OtildeÕÕÕ
214D6OumlÖÖÖ
215D7times×××
216D8OslashØØØ
217D9UgraveÙÙÙ
218DAUacuteÚÚÚ
219DBUcircÛÛÛ
220DCUumlÜÜÜ
221DDYacuteÝÝÝ
222DETHORNÞÞÞ
223DFszligßßß
224E0agraveààà
225E1aacuteááá
226E2acircâââ
227E3atildeããã
228E4aumläää
229E5aringååå
230E6aeligæææ
231E7ccedilççç
232E8egraveèèè
233E9eacuteééé
234EAecircêêê
235EBeumlëëë
236ECigraveììì
237EDiacuteííí
238EEicircîîî
239EFiumlïïï
240F0ethððð
241F1ntildeñññ
242F2ograveòòò
243F3oacuteóóó
244F4ocircôôô
245F5otildeõõõ
246F6oumlööö
247F7divide÷÷÷
248F8oslashøøø
249F9ugraveùùù
250FAuacuteúúú
251FBucircûûû
252FCuumlüüü
253FDyacuteýýý
254FEthornþþþ
255FFyumlÿÿÿ

Special Characters (xhtml-special.ent)

decimal hexadecimal entity name &#nnn; &#xhhh; &entity;
3422quot"""
3826amp&&&
603Clt<<<
623Egt>>>
3927apos'''
338152OEligŒŒŒ
339153oeligœœœ
352160ScaronŠŠŠ
353161scaronššš
376178YumlŸŸŸ
7102C6circˆˆˆ
7322DCtilde˜˜˜
81942002ensp
81952003emsp
82012009thinsp
8204200Czwnj
8205200Dzwj
8206200Elrm
8207200Frlm
82112013ndash
82122014mdash
82162018lsquo
82172019rsquo
8218201Asbquo
8220201Cldquo
8221201Drdquo
8222201Ebdquo
82242020dagger
82252021Dagger
82402030permil
82492039lsaquo
8250203Arsaquo
836420ACeuro

Symbols (xhtml-symbol.ent)

decimal hexadecimal entity name &#nnn; &#xhhh; &entity;
402192fnofƒƒƒ
913391AlphaΑΑΑ
914392BetaΒΒΒ
915393GammaΓΓΓ
916394DeltaΔΔΔ
917395EpsilonΕΕΕ
918396ZetaΖΖΖ
919397EtaΗΗΗ
920398ThetaΘΘΘ
921399IotaΙΙΙ
92239AKappaΚΚΚ
92339BLambdaΛΛΛ
92439CMuΜΜΜ
92539DNuΝΝΝ
92639EXiΞΞΞ
92739FOmicronΟΟΟ
9283A0PiΠΠΠ
9293A1RhoΡΡΡ
9313A3SigmaΣΣΣ
9323A4TauΤΤΤ
9333A5UpsilonΥΥΥ
9343A6PhiΦΦΦ
9353A7ChiΧΧΧ
9363A8PsiΨΨΨ
9373A9OmegaΩΩΩ
9453B1alphaααα
9463B2betaβββ
9473B3gammaγγγ
9483B4deltaδδδ
9493B5epsilonεεε
9503B6zetaζζζ
9513B7etaηηη
9523B8thetaθθθ
9533B9iotaιιι
9543BAkappaκκκ
9553BBlambdaλλλ
9563BCmuμμμ
9573BDnuννν
9583BExiξξξ
9593BFomicronοοο
9603C0piπππ
9613C1rhoρρρ
9623C2sigmafςςς
9633C3sigmaσσσ
9643C4tauτττ
9653C5upsilonυυυ
9663C6phiφφφ
9673C7chiχχχ
9683C8psiψψψ
9693C9omegaωωω
9773D1thetasymϑϑϑ
9783D2upsihϒϒϒ
9823D6pivϖϖϖ
82262022bull
82302026hellip
82422032prime
82432033Prime
8254203Eoline
82602044frasl
84722118weierp
84652111image
8476211Creal
84822122trade
85012135alefsym
85922190larr
85932191uarr
85942192rarr
85952193darr
85962194harr
862921B5crarr
865621D0lArr
865721D1uArr
865821D2rArr
865921D3dArr
866021D4hArr
87042200forall
87062202part
87072203exist
87092205empty
87112207nabla
87122208isin
87132209notin
8715220Bni
8719220Fprod
87212211sum
87222212minus
87272217lowast
8730221Aradic
8733221Dprop
8734221Einfin
87362220ang
87432227and
87442228or
87452229cap
8746222Acup
8747222Bint
87562234there4
8764223Csim
87732245cong
87762248asymp
88002260ne
88012261equiv
88042264le
88052265ge
88342282sub
88352283sup
88362284nsub
88382286sube
88392287supe
88532295oplus
88552297otimes
886922A5perp
890122C5sdot
89682308lceil
89692309rceil
8970230Alfloor
8971230Brfloor
90012329lang
9002232Arang
967425CAloz
98242660spades
98272663clubs
98292665hearts
98302666diams

MathML Entities

decimal hexadecimal entity name &#nnn; &#xhhh; &entity;
198 000C6 AElig Æ Æ Æ
193 000C1 Aacute Á Á Á
258 00102 Abreve Ă Ă Ă
194 000C2 Acirc   Â
1040 00410 Acy А А А
120068 1D504 Afr 𝔄 𝔄 𝔄
192 000C0 Agrave À À À
256 00100 Amacr Ā Ā Ā
10835 02A53 And
260 00104 Aogon Ą Ą Ą
120120 1D538 Aopf 𝔸 𝔸 𝔸
8289 02061 ApplyFunction
197 000C5 Aring Å Å Å
119964 1D49C Ascr 𝒜 𝒜 𝒜
8788 02254 Assign
195 000C3 Atilde à à Ã
196 000C4 Auml Ä Ä Ä
8726 02216 Backslash
10983 02AE7 Barv
8966 02306 Barwed
1041 00411 Bcy Б Б Б
8757 02235 Because
8492 0212C Bernoullis
120069 1D505 Bfr 𝔅 𝔅 𝔅
120121 1D539 Bopf 𝔹 𝔹 𝔹
728 002D8 Breve ˘ ˘ ˘
8492 0212C Bscr
8782 0224E Bumpeq
1063 00427 CHcy Ч Ч Ч
262 00106 Cacute Ć Ć Ć
8914 022D2 Cap
8517 02145 CapitalDifferentialD
8493 0212D Cayleys
268 0010C Ccaron Č Č Č
199 000C7 Ccedil Ç Ç Ç
264 00108 Ccirc Ĉ Ĉ Ĉ
8752 02230 Cconint
266 0010A Cdot Ċ Ċ Ċ
184 000B8 Cedilla ¸ ¸ ¸
183 000B7 CenterDot · · ·
8493 0212D Cfr
8857 02299 CircleDot
8854 02296 CircleMinus
8853 02295 CirclePlus
8855 02297 CircleTimes
8754 02232 ClockwiseContourIntegral
8221 0201D CloseCurlyDoubleQuote
8217 02019 CloseCurlyQuote
8759 02237 Colon
10868 02A74 Colone
8801 02261 Congruent
8751 0222F Conint
8750 0222E ContourIntegral
8450 02102 Copf
8720 02210 Coproduct
8755 02233 CounterClockwiseContourIntegral
10799 02A2F Cross
119966 1D49E Cscr 𝒞 𝒞 𝒞
8915 022D3 Cup
8781 0224D CupCap
8517 02145 DD
10513 02911 DDotrahd
1026 00402 DJcy Ђ Ђ Ђ
1029 00405 DScy Ѕ Ѕ Ѕ
1039 0040F DZcy Џ Џ Џ
8225 02021 Dagger
8225 02021 Dagger
8609 021A1 Darr
10980 02AE4 Dashv
270 0010E Dcaron Ď Ď Ď
1044 00414 Dcy Д Д Д
8711 02207 Del
916 00394 Delta Δ Δ Δ
120071 1D507 Dfr 𝔇 𝔇 𝔇
180 000B4 DiacriticalAcute ´ ´ ´
729 002D9 DiacriticalDot ˙ ˙ ˙
733 002DD DiacriticalDoubleAcute ˝ ˝ ˝
96 00060 DiacriticalGrave ` ` `
732 002DC DiacriticalTilde ˜ ˜ ˜
8900 022C4 Diamond
8518 02146 DifferentialD
120123 1D53B Dopf 𝔻 𝔻 𝔻
168 000A8 Dot ¨ ¨ ¨
8412 020DC DotDot
8784 02250 DotEqual
8751 0222F DoubleContourIntegral
168 000A8 DoubleDot ¨ ¨ ¨
8659 021D3 DoubleDownArrow
8656 021D0 DoubleLeftArrow
8660 021D4 DoubleLeftRightArrow
10980 02AE4 DoubleLeftTee
62841 0F579 DoubleLongLeftArrow
62843 0F57B DoubleLongLeftRightArrow
62842 0F57A DoubleLongRightArrow
8658 021D2 DoubleRightArrow
8872 022A8 DoubleRightTee
8657 021D1 DoubleUpArrow
8661 021D5 DoubleUpDownArrow
8741 02225 DoubleVerticalBar
8595 02193 DownArrow
10515 02913 DownArrowBar
8693 021F5 DownArrowUpArrow
785 00311 DownBreve ̑ ̑ ̑
10576 02950 DownLeftRightVector
10590 0295E DownLeftTeeVector
8637 021BD DownLeftVector
10582 02956 DownLeftVectorBar
10591 0295F DownRightTeeVector
8641 021C1 DownRightVector
10583 02957 DownRightVectorBar
8868 022A4 DownTee
8615 021A7 DownTeeArrow
8659 021D3 Downarrow
119967 1D49F Dscr 𝒟 𝒟 𝒟
272 00110 Dstrok Đ Đ Đ
330 0014A ENG Ŋ Ŋ Ŋ
208 000D0 ETH Ð Ð Ð
201 000C9 Eacute É É É
282 0011A Ecaron Ě Ě Ě
202 000CA Ecirc Ê Ê Ê
1069 0042D Ecy Э Э Э
278 00116 Edot Ė Ė Ė
120072 1D508 Efr 𝔈 𝔈 𝔈
200 000C8 Egrave È È È
8712 02208 Element
274 00112 Emacr Ē Ē Ē
9725 025FD EmptySmallSquare
62876 0F59C EmptyVerySmallSquare
280 00118 Eogon Ę Ę Ę
120124 1D53C Eopf 𝔼 𝔼 𝔼
10869 02A75 Equal
8770 02242 EqualTilde
8652 021CC Equilibrium
8496 02130 Escr
10867 02A73 Esim
203 000CB Euml Ë Ë Ë
8707 02203 Exists
8519 02147 ExponentialE
1060 00424 Fcy Ф Ф Ф
120073 1D509 Ffr 𝔉 𝔉 𝔉
9726 025FE FilledSmallSquare
62875 0F59B FilledVerySmallSquare
120125 1D53D Fopf 𝔽 𝔽 𝔽
8704 02200 ForAll
8497 02131 Fouriertrf
8497 02131 Fscr
1027 00403 GJcy Ѓ Ѓ Ѓ
915 00393 Gamma Γ Γ Γ
988 003DC Gammad Ϝ Ϝ Ϝ
286 0011E Gbreve Ğ Ğ Ğ
290 00122 Gcedil Ģ Ģ Ģ
284 0011C Gcirc Ĝ Ĝ Ĝ
1043 00413 Gcy Г Г Г
288 00120 Gdot Ġ Ġ Ġ
120074 1D50A Gfr 𝔊 𝔊 𝔊
8921 022D9 Gg
120126 1D53E Gopf 𝔾 𝔾 𝔾
8805 02265 GreaterEqual
8923 022DB GreaterEqualLess
8807 02267 GreaterFullEqual
10914 02AA2 GreaterGreater
8823 02277 GreaterLess
10878 02A7E GreaterSlantEqual
8819 02273 GreaterTilde
119970 1D4A2 Gscr 𝒢 𝒢 𝒢
8811 0226B Gt
1066 0042A HARDcy Ъ Ъ Ъ
711 002C7 Hacek ˇ ˇ ˇ
770 00302 Hat ̂ ̂ ^
292 00124 Hcirc Ĥ Ĥ Ĥ
8460 0210C Hfr
8459 0210B HilbertSpace
8461 0210D Hopf
9472 02500 HorizontalLine
8459 0210B Hscr
294 00126 Hstrok Ħ Ħ Ħ
8782 0224E HumpDownHump
8783 0224F HumpEqual
1045 00415 IEcy Е Е Е
306 00132 IJlig IJ IJ IJ
1025 00401 IOcy Ё Ё Ё
205 000CD Iacute Í Í Í
206 000CE Icirc Î Î Î
1048 00418 Icy И И И
304 00130 Idot İ İ İ
8465 02111 Ifr
204 000CC Igrave Ì Ì Ì
8465 02111 Im
298 0012A Imacr Ī Ī Ī
8520 02148 ImaginaryI
8658 021D2 Implies
8748 0222C Int
8747 0222B Integral
8898 022C2 Intersection
8203 0200B InvisibleComma
8290 02062 InvisibleTimes
302 0012E Iogon Į Į Į
120128 1D540 Iopf 𝕀 𝕀 𝕀
8464 02110 Iscr
296 00128 Itilde Ĩ Ĩ Ĩ
1030 00406 Iukcy І І І
207 000CF Iuml Ï Ï Ï
308 00134 Jcirc Ĵ Ĵ Ĵ
1049 00419 Jcy Й Й Й
120077 1D50D Jfr 𝔍 𝔍 𝔍
120129 1D541 Jopf 𝕁 𝕁 𝕁
119973 1D4A5 Jscr 𝒥 𝒥 𝒥
1032 00408 Jsercy Ј Ј Ј
1028 00404 Jukcy Є Є Є
1061 00425 KHcy Х Х Х
1036 0040C KJcy Ќ Ќ Ќ
310 00136 Kcedil Ķ Ķ Ķ
1050 0041A Kcy К К К
120078 1D50E Kfr 𝔎 𝔎 𝔎
120130 1D542 Kopf 𝕂 𝕂 𝕂
119974 1D4A6 Kscr 𝒦 𝒦 𝒦
1033 00409 LJcy Љ Љ Љ
313 00139 Lacute Ĺ Ĺ Ĺ
923 0039B Lambda Λ Λ Λ
12298 0300A Lang
8466 02112 Laplacetrf
8606 0219E Larr
317 0013D Lcaron Ľ Ľ Ľ
315 0013B Lcedil Ļ Ļ Ļ
1051 0041B Lcy Л Л Л
9001 02329 LeftAngleBracket
8592 02190 LeftArrow
8676 021E4 LeftArrowBar
8646 021C6 LeftArrowRightArrow
8968 02308 LeftCeiling
12314 0301A LeftDoubleBracket
10593 02961 LeftDownTeeVector
8643 021C3 LeftDownVector
10585 02959 LeftDownVectorBar
8970 0230A LeftFloor
8596 02194 LeftRightArrow
10574 0294E LeftRightVector
8867 022A3 LeftTee
8612 021A4 LeftTeeArrow
10586 0295A LeftTeeVector
8882 022B2 LeftTriangle
10703 029CF LeftTriangleBar
8884 022B4 LeftTriangleEqual
10577 02951 LeftUpDownVector
10592 02960 LeftUpTeeVector
8639 021BF LeftUpVector
10584 02958 LeftUpVectorBar
8636 021BC LeftVector
10578 02952 LeftVectorBar
8656 021D0 Leftarrow
8660 021D4 Leftrightarrow
8922 022DA LessEqualGreater
8806 02266 LessFullEqual
8822 02276 LessGreater
10913 02AA1 LessLess
10877 02A7D LessSlantEqual
8818 02272 LessTilde
120079 1D50F Lfr 𝔏 𝔏 𝔏
8920 022D8 Ll
8666 021DA Lleftarrow
319 0013F Lmidot Ŀ Ŀ Ŀ
62838 0F576 LongLeftArrow
62840 0F578 LongLeftRightArrow
62839 0F577 LongRightArrow
62841 0F579 Longleftarrow
62843 0F57B Longleftrightarrow
62842 0F57A Longrightarrow
120131 1D543 Lopf 𝕃 𝕃 𝕃
8601 02199 LowerLeftArrow
8600 02198 LowerRightArrow
8466 02112 Lscr
8624 021B0 Lsh
321 00141 Lstrok Ł Ł Ł
8810 0226A Lt
10501 02905 Map
1052 0041C Mcy М М М
8287 0205F MediumSpace
8499 02133 Mellintrf
120080 1D510 Mfr 𝔐 𝔐 𝔐
8723 02213 MinusPlus
120132 1D544 Mopf 𝕄 𝕄 𝕄
8499 02133 Mscr
1034 0040A NJcy Њ Њ Њ
323 00143 Nacute Ń Ń Ń
327 00147 Ncaron Ň Ň Ň
325 00145 Ncedil Ņ Ņ Ņ
1053 0041D Ncy Н Н Н
8287,65024 0205F,0FE00 NegativeMediumSpace  ︀  ︀
8197,65024 02005,0FE00 NegativeThickSpace  ︀  ︀
8201,65024 02009,0FE00 NegativeThinSpace  ︀  ︀
8202,65024 0200A,0FE00 NegativeVeryThinSpace  ︀  ︀
8811 0226B NestedGreaterGreater
8810 0226A NestedLessLess
10 0000A NewLine
120081 1D511 Nfr 𝔑 𝔑 𝔑
65279 0FEFF NoBreak  
160 000A0 NonBreakingSpace      
8469 02115 Nopf
10988 02AEC Not
8802 02262 NotCongruent
8813 0226D NotCupCap
8742 02226 NotDoubleVerticalBar
8713 02209 NotElement
8800 02260 NotEqual
8770,824 02242,00338 NotEqualTilde ≂̸ ≂̸ ≂̸
8708 02204 NotExists
8815 0226F NotGreater
8817,8421 02271,020E5 NotGreaterEqual ≱⃥ ≱⃥
8816 02270 NotGreaterFullEqual ≧̸
8811,824,65024 0226B,00338,0FE00 NotGreaterGreater ≫̸︀ ≫̸︀ ≫̸
8825 02279 NotGreaterLess
8817 02271 NotGreaterSlantEqual ⩾̸
8821 02275 NotGreaterTilde
8782,824 0224E,00338 NotHumpDownHump ≎̸ ≎̸ ≎̸
8783,824 0224F,00338 NotHumpEqual ≏̸ ≏̸ ≏̸
8938 022EA NotLeftTriangle
10703,824 029CF,00338 NotLeftTriangleBar ⧏̸ ⧏̸ ⧏̸
8940 022EC NotLeftTriangleEqual
8814 0226E NotLess
8816,8421 02270,020E5 NotLessEqual ≰⃥ ≰⃥
8824 02278 NotLessGreater
8810,824,65024 0226A,00338,0FE00 NotLessLess ≪̸︀ ≪̸︀ ≪̸
8816 02270 NotLessSlantEqual ⩽̸
8820 02274 NotLessTilde
9378,824 024A2,00338 NotNestedGreaterGreater ⒢̸ ⒢̸ ⪢̸
9377,824 024A1,00338 NotNestedLessLess ⒡̸ ⒡̸ ⪡̸
8832 02280 NotPrecedes
10927,824 02AAF,00338 NotPrecedesEqual ⪯̸ ⪯̸ ⪯̸
8928 022E0 NotPrecedesSlantEqual
8716 0220C NotReverseElement
8939 022EB NotRightTriangle
10704,824 029D0,00338 NotRightTriangleBar ⧐̸ ⧐̸ ⧐̸
8941 022ED NotRightTriangleEqual
8847,824 0228F,00338 NotSquareSubset ⊏̸ ⊏̸ ⊏̸
8930 022E2 NotSquareSubsetEqual
8848,824 02290,00338 NotSquareSuperset ⊐̸ ⊐̸ ⊐̸
8931 022E3 NotSquareSupersetEqual
8836 02284 NotSubset ⊂⃒
8840 02288 NotSubsetEqual
8833 02281 NotSucceeds
10928,824 02AB0,00338 NotSucceedsEqual ⪰̸ ⪰̸ ⪰̸
8929 022E1 NotSucceedsSlantEqual
8831,824 0227F,00338 NotSucceedsTilde ≿̸ ≿̸ ≿̸
8837 02285 NotSuperset ⊃⃒
8841 02289 NotSupersetEqual
8769 02241 NotTilde
8772 02244 NotTildeEqual
8775 02247 NotTildeFullEqual
8777 02249 NotTildeTilde
8740 02224 NotVerticalBar
119977 1D4A9 Nscr 𝒩 𝒩 𝒩
209 000D1 Ntilde Ñ Ñ Ñ
338 00152 OElig Œ Œ Œ
211 000D3 Oacute Ó Ó Ó
212 000D4 Ocirc Ô Ô Ô
1054 0041E Ocy О О О
336 00150 Odblac Ő Ő Ő
120082 1D512 Ofr 𝔒 𝔒 𝔒
210 000D2 Ograve Ò Ò Ò
332 0014C Omacr Ō Ō Ō
937 003A9 Omega Ω Ω Ω
120134 1D546 Oopf 𝕆 𝕆 𝕆
8220 0201C OpenCurlyDoubleQuote
8216 02018 OpenCurlyQuote
10836 02A54 Or
119978 1D4AA Oscr 𝒪 𝒪 𝒪
216 000D8 Oslash Ø Ø Ø
213 000D5 Otilde Õ Õ Õ
10807 02A37 Otimes
214 000D6 Ouml Ö Ö Ö
175 000AF OverBar ¯ ¯
65079 0FE37 OverBrace
9140 023B4 OverBracket
65077 0FE35 OverParenthesis
8706 02202 PartialD
1055 0041F Pcy П П П
120083 1D513 Pfr 𝔓 𝔓 𝔓
934 003A6 Phi Φ Φ Φ
928 003A0 Pi Π Π Π
177 000B1 PlusMinus ± ± ±
8460 0210C Poincareplane
8473 02119 Popf
10939 02ABB Pr
8826 0227A Precedes
10927 02AAF PrecedesEqual
8828 0227C PrecedesSlantEqual
8830 0227E PrecedesTilde
8243 02033 Prime
8719 0220F Product
8759 02237 Proportion
8733 0221D Proportional
119979 1D4AB Pscr 𝒫 𝒫 𝒫
936 003A8 Psi Ψ Ψ Ψ
120084 1D514 Qfr 𝔔 𝔔 𝔔
8474 0211A Qopf
119980 1D4AC Qscr 𝒬 𝒬 𝒬
10512 02910 RBarr
340 00154 Racute Ŕ Ŕ Ŕ
12299 0300B Rang
8608 021A0 Rarr
10518 02916 Rarrtl
344 00158 Rcaron Ř Ř Ř
342 00156 Rcedil Ŗ Ŗ Ŗ
1056 00420 Rcy Р Р Р
8476 0211C Re
8715 0220B ReverseElement
8651 021CB ReverseEquilibrium
10607 0296F ReverseUpEquilibrium
8476 0211C Rfr
9002 0232A RightAngleBracket
8594 02192 RightArrow
8677 021E5 RightArrowBar
8644 021C4 RightArrowLeftArrow
8969 02309 RightCeiling
12315 0301B RightDoubleBracket
10589 0295D RightDownTeeVector
8642 021C2 RightDownVector
10581 02955 RightDownVectorBar
8971 0230B RightFloor
8866 022A2 RightTee
8614 021A6 RightTeeArrow
10587 0295B RightTeeVector
8883 022B3 RightTriangle
10704 029D0 RightTriangleBar
8885 022B5 RightTriangleEqual
10575 0294F RightUpDownVector
10588 0295C RightUpTeeVector
8638 021BE RightUpVector
10580 02954 RightUpVectorBar
8640 021C0 RightVector
10579 02953 RightVectorBar
8658 021D2 Rightarrow
8477 0211D Ropf
10608 02970 RoundImplies
8667 021DB Rrightarrow
8475 0211B Rscr
8625 021B1 Rsh
10740 029F4 RuleDelayed
1065 00429 SHCHcy Щ Щ Щ
1064 00428 SHcy Ш Ш Ш
1068 0042C SOFTcy Ь Ь Ь
346 0015A Sacute Ś Ś Ś
10940 02ABC Sc
352 00160 Scaron Š Š Š
350 0015E Scedil Ş Ş Ş
348 0015C Scirc Ŝ Ŝ Ŝ
1057 00421 Scy С С С
120086 1D516 Sfr 𝔖 𝔖 𝔖
8964,65024 02304,0FE00 ShortDownArrow ⌄︀ ⌄︀
8592,65024 02190,0FE00 ShortLeftArrow ←︀ ←︀
8594,65024 02192,0FE00 ShortRightArrow →︀ →︀
8963,65024 02303,0FE00 ShortUpArrow ⌃︀ ⌃︀
931 003A3 Sigma Σ Σ Σ
8728 02218 SmallCircle
120138 1D54A Sopf 𝕊 𝕊 𝕊
8730 0221A Sqrt
9633 025A1 Square
8851 02293 SquareIntersection
8847 0228F SquareSubset
8849 02291 SquareSubsetEqual
8848 02290 SquareSuperset
8850 02292 SquareSupersetEqual
8852 02294 SquareUnion
119982 1D4AE Sscr 𝒮 𝒮 𝒮
8902 022C6 Star
8912 022D0 Sub
8912 022D0 Subset
8838 02286 SubsetEqual
8827 0227B Succeeds
8829 0227D SucceedsEqual
8829 0227D SucceedsSlantEqual
8831 0227F SucceedsTilde
8715 0220B SuchThat
8721 02211 Sum
8913 022D1 Sup
8835 02283 Superset
8839 02287 SupersetEqual
8913 022D1 Supset
222 000DE THORN Þ Þ Þ
1035 0040B TSHcy Ћ Ћ Ћ
1062 00426 TScy Ц Ц Ц
9 00009 Tab
356 00164 Tcaron Ť Ť Ť
354 00162 Tcedil Ţ Ţ Ţ
1058 00422 Tcy Т Т Т
120087 1D517 Tfr 𝔗 𝔗 𝔗
8756 02234 Therefore
920 00398 Theta Θ Θ Θ
8201,8202,8202 02009,0200A,0200A ThickSpace           
8201 02009 ThinSpace
8764 0223C Tilde
8771 02243 TildeEqual
8773 02245 TildeFullEqual
8776 02248 TildeTilde
120139 1D54B Topf 𝕋 𝕋 𝕋
8411 020DB TripleDot
119983 1D4AF Tscr 𝒯 𝒯 𝒯
358 00166 Tstrok Ŧ Ŧ Ŧ
218 000DA Uacute Ú Ú Ú
8607 0219F Uarr
10569 02949 Uarrocir
1038 0040E Ubrcy Ў Ў Ў
364 0016C Ubreve Ŭ Ŭ Ŭ
219 000DB Ucirc Û Û Û
1059 00423 Ucy У У У
368 00170 Udblac Ű Ű Ű
120088 1D518 Ufr 𝔘 𝔘 𝔘
217 000D9 Ugrave Ù Ù Ù
362 0016A Umacr Ū Ū Ū
818 00332 UnderBar ̲ ̲ _
65080 0FE38 UnderBrace
9141 023B5 UnderBracket
65078 0FE36 UnderParenthesis
8899 022C3 Union
8846 0228E UnionPlus
370 00172 Uogon Ų Ų Ų
120140 1D54C Uopf 𝕌 𝕌 𝕌
8593 02191 UpArrow
10514 02912 UpArrowBar
8645 021C5 UpArrowDownArrow
8597 02195 UpDownArrow
10606 0296E UpEquilibrium
8869 022A5 UpTee
8613 021A5 UpTeeArrow
8657 021D1 Uparrow
8661 021D5 Updownarrow
8598 02196 UpperLeftArrow
8599 02197 UpperRightArrow
978 003D2 Upsi ϒ ϒ ϒ
978 003D2 Upsilon ϒ ϒ Υ
366 0016E Uring Ů Ů Ů
119984 1D4B0 Uscr 𝒰 𝒰 𝒰
360 00168 Utilde Ũ Ũ Ũ
220 000DC Uuml Ü Ü Ü
8875 022AB VDash
10987 02AEB Vbar
1042 00412 Vcy В В В
8873 022A9 Vdash
10982 02AE6 Vdashl
8897 022C1 Vee
8214 02016 Verbar
8214 02016 Vert
8739 02223 VerticalBar
124 0007C VerticalLine | | |
10072 02758 VerticalSeparator
8768 02240 VerticalTilde
8202 0200A VeryThinSpace
120089 1D519 Vfr 𝔙 𝔙 𝔙
120141 1D54D Vopf 𝕍 𝕍 𝕍
119985 1D4B1 Vscr 𝒱 𝒱 𝒱
8874 022AA Vvdash
372 00174 Wcirc Ŵ Ŵ Ŵ
8896 022C0 Wedge
120090 1D51A Wfr 𝔚 𝔚 𝔚
120142 1D54E Wopf 𝕎 𝕎 𝕎
119986 1D4B2 Wscr 𝒲 𝒲 𝒲
120091 1D51B Xfr 𝔛 𝔛 𝔛
926 0039E Xi Ξ Ξ Ξ
120143 1D54F Xopf 𝕏 𝕏 𝕏
119987 1D4B3 Xscr 𝒳 𝒳 𝒳
1071 0042F YAcy Я Я Я
1031 00407 YIcy Ї Ї Ї
1070 0042E YUcy Ю Ю Ю
221 000DD Yacute Ý Ý Ý
374 00176 Ycirc Ŷ Ŷ Ŷ
1067 0042B Ycy Ы Ы Ы
120092 1D51C Yfr 𝔜 𝔜 𝔜
120144 1D550 Yopf 𝕐 𝕐 𝕐
119988 1D4B4 Yscr 𝒴 𝒴 𝒴
376 00178 Yuml Ÿ Ÿ Ÿ
1046 00416 ZHcy Ж Ж Ж
377 00179 Zacute Ź Ź Ź
381 0017D Zcaron Ž Ž Ž
1047 00417 Zcy З З З
379 0017B Zdot Ż Ż Ż
8203 0200B ZeroWidthSpace
8488 02128 Zfr
8484 02124 Zopf
119989 1D4B5 Zscr 𝒵 𝒵 𝒵
225 000E1 aacute á á á
259 00103 abreve ă ă ă
10511 0290F ac
10715 029DB acE ∾̳
8767 0223F acd
226 000E2 acirc â â â
180 000B4 acute ´ ´ ´
1072 00430 acy а а а
230 000E6 aelig æ æ æ
8289 02061 af
120094 1D51E afr 𝔞 𝔞 𝔞
224 000E0 agrave à à à
8501 02135 aleph
945 003B1 alpha α α α
257 00101 amacr ā ā ā
10815 02A3F amalg ⨿ ⨿ ⨿
38 00026 amp & & &
8743 02227 and
10837 02A55 andand
10844 02A5C andd
10840 02A58 andslope
10842 02A5A andv
8736 02220 ang
10660 029A4 ange
8736 02220 angle
8737 02221 angmsd
10664 029A8 angmsdaa
10665 029A9 angmsdab
10666 029AA angmsdac
10667 029AB angmsdad
10668 029AC angmsdae
10669 029AD angmsdaf
10670 029AE angmsdag
10671 029AF angmsdah
8735 0221F angrt
10653,65024 0299D,0FE00 angrtvb ⦝︀ ⦝︀
10653 0299D angrtvbd
8738 02222 angsph
8491 0212B angst Å
9084 0237C angzarr
261 00105 aogon ą ą ą
120146 1D552 aopf 𝕒 𝕒 𝕒
8776 02248 ap
8778 0224A apE
10863 02A6F apacir
8778 0224A ape
8779 0224B apid
39 00027 apos ' ' '
8776 02248 approx
8778 0224A approxeq
229 000E5 aring å å å
119990 1D4B6 ascr 𝒶 𝒶 𝒶
42 0002A ast * * *
8781 0224D asymp
227 000E3 atilde ã ã ã
228 000E4 auml ä ä ä
8755 02233 awconint
10769 02A11 awint
10989 02AED bNot
8780 0224C backcong
1014 003F6 backepsilon ϶ ϶ ϶
8245 02035 backprime
8765 0223D backsim
8909 022CD backsimeq
8893 022BD barvee
8892 022BC barwed
8892 022BC barwedge
9141 023B5 bbrk
8780 0224C bcong
1073 00431 bcy б б б
8757 02235 becaus
8757 02235 because
10672 029B0 bemptyv
1014 003F6 bepsi ϶ ϶ ϶
8492 0212C bernou
946 003B2 beta β β β
8502 02136 beth
8812 0226C between
120095 1D51F bfr 𝔟 𝔟 𝔟
8898 022C2 bigcap
9711 025EF bigcirc
8899 022C3 bigcup
8857 02299 bigodot
8853 02295 bigoplus
8855 02297 bigotimes
8852 02294 bigsqcup
9733 02605 bigstar
9661 025BD bigtriangledown
9651 025B3 bigtriangleup
8846 0228E biguplus
8897 022C1 bigvee
8896 022C0 bigwedge
10509 0290D bkarow
10731 029EB blacklozenge
9642 025AA blacksquare
9652 025B4 blacktriangle
9662 025BE blacktriangledown
9666 025C2 blacktriangleleft
9656 025B8 blacktriangleright
9251 02423 blank
9618 02592 blk12
9617 02591 blk14
9619 02593 blk34
9608 02588 block
61,8421 0003D,020E5 bne =⃥ =⃥ =⃥
8801,8421 02261,020E5 bnequiv ≡⃥ ≡⃥ ≡⃥
8976 02310 bnot
120147 1D553 bopf 𝕓 𝕓 𝕓
8869 022A5 bot
8869 022A5 bottom
8904 022C8 bowtie
9559 02557 boxDL
9556 02554 boxDR
9558 02556 boxDl
9555 02553 boxDr
9552 02550 boxH
9574 02566 boxHD
9577 02569 boxHU
9572 02564 boxHd
9575 02567 boxHu
9565 0255D boxUL
9562 0255A boxUR
9564 0255C boxUl
9561 02559 boxUr
9553 02551 boxV
9580 0256C boxVH
9571 02563 boxVL
9568 02560 boxVR
9579 0256B boxVh
9570 02562 boxVl
9567 0255F boxVr
10697 029C9 boxbox
9557 02555 boxdL
9554 02552 boxdR
9488 02510 boxdl
9484 0250C boxdr
9472 02500 boxh
9573 02565 boxhD
9576 02568 boxhU
9516 0252C boxhd
9524 02534 boxhu
8863 0229F boxminus
8862 0229E boxplus
8864 022A0 boxtimes
9563 0255B boxuL
9560 02558 boxuR
9496 02518 boxul
9492 02514 boxur
9474 02502 boxv
9578 0256A boxvH
9569 02561 boxvL
9566 0255E boxvR
9532 0253C boxvh
9508 02524 boxvl
9500 0251C boxvr
8245 02035 bprime
728 002D8 breve ˘ ˘ ˘
166 000A6 brvbar ¦ ¦ ¦
119991 1D4B7 bscr 𝒷 𝒷 𝒷
8271 0204F bsemi
8765 0223D bsim
8909 022CD bsime
92 0005C bsol \ \ \
10693 029C5 bsolb
92,8834 0005C,02282 bsolhsub \⊂ \⊂
8226 02022 bull
8226 02022 bullet
8782 0224E bump
10926 02AAE bumpE
8783 0224F bumpe
8783 0224F bumpeq
263 00107 cacute ć ć ć
8745 02229 cap
10820 02A44 capand
10825 02A49 capbrcup
10827 02A4B capcap
10823 02A47 capcup
10816 02A40 capdot
8745,65024 02229,0FE00 caps ∩︀ ∩︀ ∩︀
8257 02041 caret
711 002C7 caron ˇ ˇ ˇ
10829 02A4D ccaps
269 0010D ccaron č č č
231 000E7 ccedil ç ç ç
265 00109 ccirc ĉ ĉ ĉ
10828 02A4C ccups
10832 02A50 ccupssm
267 0010B cdot ċ ċ ċ
184 000B8 cedil ¸ ¸ ¸
10674 029B2 cemptyv
162 000A2 cent ¢ ¢ ¢
183 000B7 centerdot · · ·
120096 1D520 cfr 𝔠 𝔠 𝔠
1095 00447 chcy ч ч ч
10003 02713 check
10003 02713 checkmark
967 003C7 chi χ χ χ
9675 025CB cir
10691 029C3 cirE
94 0005E circ ^ ^ ˆ
8791 02257 circeq
8634 021BA circlearrowleft
8635 021BB circlearrowright
174 000AE circledR ® ® ®
9416 024C8 circledS
8859 0229B circledast
8858 0229A circledcirc
8861 0229D circleddash
8791 02257 cire
10768 02A10 cirfnint
10991 02AEF cirmid
10690 029C2 cirscir
9827 02663 clubs
9827 02663 clubsuit
58 0003A colon : : :
8788 02254 colone
8788 02254 coloneq
44 0002C comma , , ,
64 00040 commat @ @ @
8705 02201 comp
8728 02218 compfn
8705 02201 complement
8450 02102 complexes
8773 02245 cong
10861 02A6D congdot
8750 0222E conint
120148 1D554 copf 𝕔 𝕔 𝕔
8720 02210 coprod
169 000A9 copy © © ©
8471 02117 copysr
10007 02717 cross
119992 1D4B8 cscr 𝒸 𝒸 𝒸
10959 02ACF csub
10961 02AD1 csube
10960 02AD0 csup
10962 02AD2 csupe
8943 022EF ctdot
10552 02938 cudarrl
10549 02935 cudarrr
8926 022DE cuepr
8927 022DF cuesc
8630 021B6 cularr
10557 0293D cularrp
8746 0222A cup
10824 02A48 cupbrcap
10822 02A46 cupcap
10826 02A4A cupcup
8845 0228D cupdot
10821 02A45 cupor
8746,65024 0222A,0FE00 cups ∪︀ ∪︀ ∪︀
8631 021B7 curarr
10556 0293C curarrm
8926 022DE curlyeqprec
8927 022DF curlyeqsucc
8910 022CE curlyvee
8911 022CF curlywedge
164 000A4 curren ¤ ¤ ¤
8630 021B6 curvearrowleft
8631 021B7 curvearrowright
8910 022CE cuvee
8911 022CF cuwed
8754 02232 cwconint
8753 02231 cwint
9005 0232D cylcty
8659 021D3 dArr
10597 02965 dHar
8224 02020 dagger
8224 02020 dagger
8504 02138 daleth
8595 02193 darr
8208 02010 dash
8867 022A3 dashv
10511 0290F dbkarow
733 002DD dblac ˝ ˝ ˝
271 0010F dcaron ď ď ď
1076 00434 dcy д д д
8518 02146 dd
8225 02021 ddagger
8650 021CA ddarr
10871 02A77 ddotseq
176 000B0 deg ° ° °
948 003B4 delta δ δ δ
10673 029B1 demptyv
10623 0297F dfisht ⥿ ⥿ ⥿
120097 1D521 dfr 𝔡 𝔡 𝔡
8643 021C3 dharl
8642 021C2 dharr
8900 022C4 diam
8900 022C4 diamond
9830 02666 diamondsuit
9830 02666 diams
168 000A8 die ¨ ¨ ¨
988 003DC digamma Ϝ Ϝ ϝ
8946 022F2 disin
247 000F7 div ÷ ÷ ÷
247 000F7 divide ÷ ÷ ÷
8903 022C7 divideontimes
8903 022C7 divonx
1106 00452 djcy ђ ђ ђ
8990 0231E dlcorn
8973 0230D dlcrop
36 00024 dollar $ $ $
120149 1D555 dopf 𝕕 𝕕 𝕕
729 002D9 dot ˙ ˙ ˙
8784 02250 doteq
8785 02251 doteqdot
8760 02238 dotminus
8724 02214 dotplus
8865 022A1 dotsquare
8966 02306 doublebarwedge
8595 02193 downarrow
8650 021CA downdownarrows
8643 021C3 downharpoonleft
8642 021C2 downharpoonright
10512 02910 drbkarow
8991 0231F drcorn
8972 0230C drcrop
119993 1D4B9 dscr 𝒹 𝒹 𝒹
1109 00455 dscy ѕ ѕ ѕ
10742 029F6 dsol
273 00111 dstrok đ đ đ
8945 022F1 dtdot
9663 025BF dtri
9662 025BE dtrif
8693 021F5 duarr
10607 0296F duhar
10662 029A6 dwangle
1119 0045F dzcy џ џ џ
62882 0F5A2 dzigrarr
10871 02A77 eDDot
8785 02251 eDot
233 000E9 eacute é é é
8795 0225B easter
283 0011B ecaron ě ě ě
8790 02256 ecir
234 000EA ecirc ê ê ê
8789 02255 ecolon
1101 0044D ecy э э э
279 00117 edot ė ė ė
8519 02147 ee
8786 02252 efDot
120098 1D522 efr 𝔢 𝔢 𝔢
10906 02A9A eg
232 000E8 egrave è è è
8925 022DD egs
10904 02A98 egsdot
10905 02A99 el
8467 02113 ell
8924 022DC els
10903 02A97 elsdot
275 00113 emacr ē ē ē
8709,65024 02205,0FE00 empty ∅︀ ∅︀
8709,65024 02205,0FE00 emptyset ∅︀ ∅︀
8709 02205 emptyv
8195 02003 emsp
8196 02004 emsp13
8197 02005 emsp14
331 0014B eng ŋ ŋ ŋ
8194 02002 ensp
281 00119 eogon ę ę ę
120150 1D556 eopf 𝕖 𝕖 𝕖
8917 022D5 epar
10723 029E3 eparsl
10865 02A71 eplus
949 003B5 epsi ε ε ε
603 0025B epsiv ɛ ɛ ϵ
8790 02256 eqcirc
8789 02255 eqcolon
8770 02242 eqsim
8925 022DD eqslantgtr
8924 022DC eqslantless
61 0003D equals = = =
8799 0225F equest
8801 02261 equiv
10872 02A78 equivDD
10725 029E5 eqvparsl
8787 02253 erDot
10609 02971 erarr
8495 0212F escr
8784 02250 esdot
8770 02242 esim
951 003B7 eta η η η
240 000F0 eth ð ð ð
235 000EB euml ë ë ë
33 00021 excl ! ! !
8707 02203 exist
8496 02130 expectation
8519 02147 exponentiale
8786 02252 fallingdotseq
1092 00444 fcy ф ф ф
9792 02640 female
64259 0FB03 ffilig
64256 0FB00 fflig
64260 0FB04 ffllig
120099 1D523 ffr 𝔣 𝔣 𝔣
64257 0FB01 filig
9837 0266D flat
64258 0FB02 fllig
402 00192 fnof ƒ ƒ ƒ
120151 1D557 fopf 𝕗 𝕗 𝕗
8704 02200 forall
8916 022D4 fork
10969 02AD9 forkv
10765 02A0D fpartint
189 000BD frac12 ½ ½ ½
8531 02153 frac13
188 000BC frac14 ¼ ¼ ¼
8533 02155 frac15
8537 02159 frac16
8539 0215B frac18
8532 02154 frac23
8534 02156 frac25
190 000BE frac34 ¾ ¾ ¾
8535 02157 frac35
8540 0215C frac38
8536 02158 frac45
8538 0215A frac56
8541 0215D frac58
8542 0215E frac78
8994 02322 frown
119995 1D4BB fscr 𝒻 𝒻 𝒻
8807 02267 gE
8923 022DB gEl
501 001F5 gacute ǵ ǵ ǵ
947 003B3 gamma γ γ γ
988 003DC gammad Ϝ Ϝ ϝ
8819 02273 gap
287 0011F gbreve ğ ğ ğ
285 0011D gcirc ĝ ĝ ĝ
1075 00433 gcy г г г
289 00121 gdot ġ ġ ġ
8805 02265 ge
8923 022DB gel
8805 02265 geq
8807 02267 geqq
10878 02A7E geqslant
10878 02A7E ges
10921 02AA9 gescc
10880 02A80 gesdot
10882 02A82 gesdoto
10884 02A84 gesdotol
8923,65024 022DB,0FE00 gesl ⋛︀ ⋛︀ ⋛︀
10900 02A94 gesles
120100 1D524 gfr 𝔤 𝔤 𝔤
8811 0226B gg
8921 022D9 ggg
8503 02137 gimel
1107 00453 gjcy ѓ ѓ ѓ
8823 02277 gl
10898 02A92 glE
10917 02AA5 gla
10916 02AA4 glj
8809 02269 gnE
10890 02A8A gnap
10890 02A8A gnapprox
8809 02269 gne
8809 02269 gneq
8809 02269 gneqq
8935 022E7 gnsim
120152 1D558 gopf 𝕘 𝕘 𝕘
96 00060 grave ` ` `
8458 0210A gscr
8819 02273 gsim
10894 02A8E gsime
10896 02A90 gsiml
62 0003E gt > > >
10919 02AA7 gtcc
10874 02A7A gtcir
8919 022D7 gtdot
10645 02995 gtlPar
10876 02A7C gtquest
8819 02273 gtrapprox
10616 02978 gtrarr
8919 022D7 gtrdot
8923 022DB gtreqless
8923 022DB gtreqqless
8823 02277 gtrless
8819 02273 gtrsim
8809,65024 02269,0FE00 gvertneqq ≩︀ ≩︀ ≩︀
8809,65024 02269,0FE00 gvnE ≩︀ ≩︀ ≩︀
8660 021D4 hArr
8202 0200A hairsp
189 000BD half ½ ½ ½
8459 0210B hamilt
1098 0044A hardcy ъ ъ ъ
8596 02194 harr
10568 02948 harrcir
8621 021AD harrw
8463,65024 0210F,0FE00 hbar ℏ︀ ℏ︀
293 00125 hcirc ĥ ĥ ĥ
9825 02661 heartsuit
8230 02026 hellip
8889 022B9 hercon
120101 1D525 hfr 𝔥 𝔥 𝔥
10533 02925 hksearow
10534 02926 hkswarow
8703 021FF hoarr
8763 0223B homtht
8617 021A9 hookleftarrow
8618 021AA hookrightarrow
120153 1D559 hopf 𝕙 𝕙 𝕙
8213 02015 horbar
119997 1D4BD hscr 𝒽 𝒽 𝒽
8463 0210F hslash
295 00127 hstrok ħ ħ ħ
8259 02043 hybull
8208 02010 hyphen
237 000ED iacute í í í
8203 0200B ic
238 000EE icirc î î î
1080 00438 icy и и и
1077 00435 iecy е е е
161 000A1 iexcl ¡ ¡ ¡
8660 021D4 iff
120102 1D526 ifr 𝔦 𝔦 𝔦
236 000EC igrave ì ì ì
8520 02148 ii
10764 02A0C iiiint
8749 0222D iiint
10716 029DC iinfin
8489 02129 iiota
307 00133 ijlig ij ij ij
299 0012B imacr ī ī ī
8465 02111 image
8464 02110 imagline
8465 02111 imagpart
305 00131 imath ı ı ı
8887 022B7 imof
120131 1D543 imped 𝕃 𝕃 Ƶ
8712 02208 in
8453 02105 incare
8734 0221E infin
305 00131 inodot ı ı ı
8747 0222B int
8890 022BA intcal
8484 02124 integers
8890 022BA intercal
10775 02A17 intlarhk
10812 02A3C intprod
1105 00451 iocy ё ё ё
303 0012F iogon į į į
120154 1D55A iopf 𝕚 𝕚 𝕚
953 003B9 iota ι ι ι
10812 02A3C iprod
191 000BF iquest ¿ ¿ ¿
119998 1D4BE iscr 𝒾 𝒾 𝒾
8712 02208 isin
8953 022F9 isinE
8949 022F5 isindot
8948 022F4 isins
8947 022F3 isinsv
8712 02208 isinv
8290 02062 it
297 00129 itilde ĩ ĩ ĩ
1110 00456 iukcy і і і
239 000EF iuml ï ï ï
309 00135 jcirc ĵ ĵ ĵ
1081 00439 jcy й й й
120103 1D527 jfr 𝔧 𝔧 𝔧
106,65024 0006A,0FE00 jmath j︀ j︀ ȷ
120155 1D55B jopf 𝕛 𝕛 𝕛
119999 1D4BF jscr 𝒿 𝒿 𝒿
1112 00458 jsercy ј ј ј
1108 00454 jukcy є є є
954 003BA kappa κ κ κ
1008 003F0 kappav ϰ ϰ ϰ
311 00137 kcedil ķ ķ ķ
1082 0043A kcy к к к
120104 1D528 kfr 𝔨 𝔨 𝔨
312 00138 kgreen ĸ ĸ ĸ
1093 00445 khcy х х х
1116 0045C kjcy ќ ќ ќ
120156 1D55C kopf 𝕜 𝕜 𝕜
120000 1D4C0 kscr 𝓀 𝓀 𝓀
8666 021DA lAarr
8656 021D0 lArr
10523 0291B lAtail
10510 0290E lBarr
8806 02266 lE
8922 022DA lEg
10594 02962 lHar
314 0013A lacute ĺ ĺ ĺ
10676 029B4 laemptyv
8466 02112 lagran
955 003BB lambda λ λ λ
9001 02329 lang
10641 02991 langd
9001 02329 langle
8818 02272 lap
171 000AB laquo « « «
8592 02190 larr
8676 021E4 larrb
10527 0291F larrbfs
10525 0291D larrfs
8617 021A9 larrhk
8619 021AB larrlp
10553 02939 larrpl
10611 02973 larrsim
8610 021A2 larrtl
10923 02AAB lat
10521 02919 latail
10925 02AAD late
10925,65024 02AAD,0FE00 lates ⪭︀ ⪭︀ ⪭︀
10508 0290C lbarr
12308 03014 lbbrk
123 0007B lbrace { { {
91 0005B lbrack [ [ [
10635 0298B lbrke
10639 0298F lbrksld
10637 0298D lbrkslu
318 0013E lcaron ľ ľ ľ
316 0013C lcedil ļ ļ ļ
8968 02308 lceil
123 0007B lcub { { {
1083 0043B lcy л л л
10550 02936 ldca
8220 0201C ldquo
8222 0201E ldquor
10599 02967 ldrdhar
10571 0294B ldrushar
8626 021B2 ldsh
8804 02264 le
8592 02190 leftarrow
8610 021A2 leftarrowtail
8637 021BD leftharpoondown
8636 021BC leftharpoonup
8647 021C7 leftleftarrows
8596 02194 leftrightarrow
8646 021C6 leftrightarrows
8651 021CB leftrightharpoons
8621 021AD leftrightsquigarrow
8907 022CB leftthreetimes
8922 022DA leg
8804 02264 leq
8806 02266 leqq
10877 02A7D leqslant
10877 02A7D les
10920 02AA8 lescc
10879 02A7F lesdot ⩿ ⩿ ⩿
10881 02A81 lesdoto
10883 02A83 lesdotor
8922,65024 022DA,0FE00 lesg ⋚︀ ⋚︀ ⋚︀
10899 02A93 lesges
8818 02272 lessapprox
8918 022D6 lessdot
8922 022DA lesseqgtr
8922 022DA lesseqqgtr
8822 02276 lessgtr
8818 02272 lesssim
10620 0297C lfisht
8970 0230A lfloor
120105 1D529 lfr 𝔩 𝔩 𝔩
8822 02276 lg
10897 02A91 lgE
8637 021BD lhard
8636 021BC lharu
10602 0296A lharul
9604 02584 lhblk
1113 00459 ljcy љ љ љ
8810 0226A ll
8647 021C7 llarr
8990 0231E llcorner
10603 0296B llhard
9722 025FA lltri
320 00140 lmidot ŀ ŀ ŀ
9136 023B0 lmoust
9136 023B0 lmoustache
8808 02268 lnE
10889 02A89 lnap
10889 02A89 lnapprox
8808 02268 lne
8808 02268 lneq
8808 02268 lneqq
8934 022E6 lnsim
62808 0F558 loang
8701 021FD loarr
12314 0301A lobrk
62838 0F576 longleftarrow
62840 0F578 longleftrightarrow
62845 0F57D longmapsto
62839 0F577 longrightarrow
8619 021AB looparrowleft
8620 021AC looparrowright
12312 03018 lopar
120157 1D55D lopf 𝕝 𝕝 𝕝
10797 02A2D loplus
10804 02A34 lotimes
8727 02217 lowast
95 0005F lowbar _ _ _
9674 025CA loz
9674 025CA lozenge
10731 029EB lozf
40 00028 lpar ( ( (
10643 02993 lparlt
8646 021C6 lrarr
8991 0231F lrcorner
8651 021CB lrhar
10605 0296D lrhard
8895 022BF lrtri
8467 02113 lscr 𝓁
8624 021B0 lsh
8818 02272 lsim
10893 02A8D lsime
10895 02A8F lsimg
91 0005B lsqb [ [ [
8216 02018 lsquo
8218 0201A lsquor
322 00142 lstrok ł ł ł
60 0003C lt < < <
10918 02AA6 ltcc
10873 02A79 ltcir
8918 022D6 ltdot
8907 022CB lthree
8905 022C9 ltimes
10614 02976 ltlarr
10875 02A7B ltquest
10646 02996 ltrPar
9667 025C3 ltri
8884 022B4 ltrie
9666 025C2 ltrif
10570 0294A lurdshar
10598 02966 luruhar
8808,65024 02268,0FE00 lvertneqq ≨︀ ≨︀ ≨︀
8808,65024 02268,0FE00 lvnE ≨︀ ≨︀ ≨︀
8762 0223A mDDot
175 000AF macr ¯ ¯ ¯
9794 02642 male
10016 02720 malt
10016 02720 maltese
8614 021A6 map
8614 021A6 mapsto
8615 021A7 mapstodown
8612 021A4 mapstoleft
8613 021A5 mapstoup
9646 025AE marker
10793 02A29 mcomma
1084 0043C mcy м м м
8212 02014 mdash
8737 02221 measuredangle
120106 1D52A mfr 𝔪 𝔪 𝔪
8487 02127 mho
181 000B5 micro µ µ µ
8739 02223 mid
42 0002A midast * * *
10992 02AF0 midcir
183 000B7 middot · · ·
8722 02212 minus
8863 0229F minusb
8760 02238 minusd
10794 02A2A minusdu
10971 02ADB mlcp
8230 02026 mldr
8723 02213 mnplus
8871 022A7 models
120158 1D55E mopf 𝕞 𝕞 𝕞
8723 02213 mp
120002 1D4C2 mscr 𝓂 𝓂 𝓂
8766 0223E mstpos
956 003BC mu μ μ μ
8888 022B8 multimap
8888 022B8 mumap
8921,824 022D9,00338 nGg ⋙̸ ⋙̸ ⋙̸
8811,824 0226B,00338 nGt ≫̸ ≫̸ ≫⃒
8811,824,65024 0226B,00338,0FE00 nGtv ≫̸︀ ≫̸︀ ≫̸
8653 021CD nLeftarrow
8654 021CE nLeftrightarrow
8920,824 022D8,00338 nLl ⋘̸ ⋘̸ ⋘̸
8810,824 0226A,00338 nLt ≪̸ ≪̸ ≪⃒
8810,824,65024 0226A,00338,0FE00 nLtv ≪̸︀ ≪̸︀ ≪̸
8655 021CF nRightarrow
8879 022AF nVDash
8878 022AE nVdash
8711 02207 nabla
324 00144 nacute ń ń ń
8736,824 02220,00338 nang ∠̸ ∠̸ ∠⃒
8777 02249 nap
10864,824 02A70,00338 napE ⩰̸ ⩰̸ ⩰̸
8779,824 0224B,00338 napid ≋̸ ≋̸ ≋̸
329 00149 napos ʼn ʼn ʼn
8777 02249 napprox
9838 0266E natur
9838 0266E natural
8469 02115 naturals
160 000A0 nbsp      
8782,824 0224E,00338 nbump ≎̸ ≎̸ ≎̸
8783,824 0224F,00338 nbumpe ≏̸ ≏̸ ≏̸
10819 02A43 ncap
328 00148 ncaron ň ň ň
326 00146 ncedil ņ ņ ņ
8775 02247 ncong
10861,824 02A6D,00338 ncongdot ⩭̸ ⩭̸ ⩭̸
10818 02A42 ncup
1085 0043D ncy н н н
8211 02013 ndash
8800 02260 ne
8663 021D7 neArr
10532 02924 nearhk
8599 02197 nearr
8599 02197 nearrow
8800,65024 02260,0FE00 nedot ≠︀ ≠︀ ≐̸
8802 02262 nequiv
10536 02928 nesear
8770,824 02242,00338 nesim ≂̸ ≂̸ ≂̸
8708 02204 nexist
8708 02204 nexists
120107 1D52B nfr 𝔫 𝔫 𝔫
8817 02271 ngE ≧̸
8817,8421 02271,020E5 nge ≱⃥ ≱⃥
8817,8421 02271,020E5 ngeq ≱⃥ ≱⃥
8817 02271 ngeqq ≧̸
8817 02271 ngeqslant ⩾̸
8817 02271 nges ⩾̸
8821 02275 ngsim
8815 0226F ngt
8815 0226F ngtr
8654 021CE nhArr
8622 021AE nharr
10994 02AF2 nhpar
8715 0220B ni
8956 022FC nis
8954 022FA nisd
8715 0220B niv
1114 0045A njcy њ њ њ
8653 021CD nlArr
8816 02270 nlE ≦̸
8602 0219A nlarr
8229 02025 nldr
8816,8421 02270,020E5 nle ≰⃥ ≰⃥
8602 0219A nleftarrow
8622 021AE nleftrightarrow
8816,8421 02270,020E5 nleq ≰⃥ ≰⃥
8816 02270 nleqq ≦̸
8816 02270 nleqslant ⩽̸
8816 02270 nles ⩽̸
8814 0226E nless
8820 02274 nlsim
8814 0226E nlt
8938 022EA nltri
8940 022EC nltrie
8740 02224 nmid
120159 1D55F nopf 𝕟 𝕟 𝕟
172 000AC not ¬ ¬ ¬
8713 02209 notin
8950,65024 022F6,0FE00 notindot ⋶︀ ⋶︀ ⋵̸
8713,824 02209,00338 notinva ∉̸ ∉̸
8951 022F7 notinvb
8950 022F6 notinvc
8716 0220C notni
8716 0220C notniva
8958 022FE notnivb
8957 022FD notnivc
8742 02226 npar
8742 02226 nparallel
8741,65024,8421 02225,0FE00,020E5 nparsl ∥︀⃥ ∥︀⃥ ⫽⃥
8706,824 02202,00338 npart ∂̸ ∂̸ ∂̸
10772 02A14 npolint
8832 02280 npr
8928 022E0 nprcue
10927,824 02AAF,00338 npre ⪯̸ ⪯̸ ⪯̸
8832 02280 nprec
10927,824 02AAF,00338 npreceq ⪯̸ ⪯̸ ⪯̸
8655 021CF nrArr
8603 0219B nrarr
10547,824 02933,00338 nrarrc ⤳̸ ⤳̸ ⤳̸
8605,824 0219D,00338 nrarrw ↝̸ ↝̸ ↝̸
8603 0219B nrightarrow
8939 022EB nrtri
8941 022ED nrtrie
8833 02281 nsc
8929 022E1 nsccue
10928,824 02AB0,00338 nsce ⪰̸ ⪰̸ ⪰̸
120003 1D4C3 nscr 𝓃 𝓃 𝓃
8740,65024 02224,0FE00 nshortmid ∤︀ ∤︀
8742,65024 02226,0FE00 nshortparallel ∦︀ ∦︀
8769 02241 nsim
8772 02244 nsime
8772 02244 nsimeq
8740,65024 02224,0FE00 nsmid ∤︀ ∤︀
8742,65024 02226,0FE00 nspar ∦︀ ∦︀
8930 022E2 nsqsube
8931 022E3 nsqsupe
8836 02284 nsub
8840 02288 nsubE ⫅̸
8840 02288 nsube
8836 02284 nsubset ⊂⃒
8840 02288 nsubseteq
8840 02288 nsubseteqq ⫅̸
8833 02281 nsucc
10928,824 02AB0,00338 nsucceq ⪰̸ ⪰̸ ⪰̸
8837 02285 nsup
8841 02289 nsupE ⫆̸
8841 02289 nsupe
8837 02285 nsupset ⊃⃒
8841 02289 nsupseteq
8841 02289 nsupseteqq ⫆̸
8825 02279 ntgl
241 000F1 ntilde ñ ñ ñ
8824 02278 ntlg
8938 022EA ntriangleleft
8940 022EC ntrianglelefteq
8939 022EB ntriangleright
8941 022ED ntrianglerighteq
957 003BD nu ν ν ν
35 00023 num # # #
8470 02116 numero
8199 02007 numsp
8877 022AD nvDash
8654 021CE nvHarr
8777,824 02249,00338 nvap ≉̸ ≉̸ ≍⃒
8876 022AC nvdash
8817 02271 nvge ≥⃒
8815 0226F nvgt >⃒
10718 029DE nvinfin
8653 021CD nvlArr
8816 02270 nvle ≤⃒
8814 0226E nvlt <⃒
8940,824 022EC,00338 nvltrie ⋬̸ ⋬̸ ⊴⃒
8655 021CF nvrArr
8941,824 022ED,00338 nvrtrie ⋭̸ ⋭̸ ⊵⃒
8769,824 02241,00338 nvsim ≁̸ ≁̸ ∼⃒
8662 021D6 nwArr
10531 02923 nwarhk
8598 02196 nwarr
8598 02196 nwarrow
10535 02927 nwnear
9416 024C8 oS
243 000F3 oacute ó ó ó
8859 0229B oast
8858 0229A ocir
244 000F4 ocirc ô ô ô
1086 0043E ocy о о о
8861 0229D odash
337 00151 odblac ő ő ő
10808 02A38 odiv
8857 02299 odot
10684 029BC odsold
339 00153 oelig œ œ œ
10687 029BF ofcir ⦿ ⦿ ⦿
120108 1D52C ofr 𝔬 𝔬 𝔬
731 002DB ogon ˛ ˛ ˛
242 000F2 ograve ò ò ò
10689 029C1 ogt
10677 029B5 ohbar
8486 02126 ohm Ω
8750 0222E oint
8634 021BA olarr
10686 029BE olcir
10683 029BB olcross
10688 029C0 olt
333 0014D omacr ō ō ō
969 003C9 omega ω ω ω
10678 029B6 omid
8854 02296 ominus
120160 1D560 oopf 𝕠 𝕠 𝕠
10679 029B7 opar
10681 029B9 operp
8853 02295 oplus
8744 02228 or
8635 021BB orarr
10845 02A5D ord
8500 02134 order
8500 02134 orderof
170 000AA ordf ª ª ª
186 000BA ordm º º º
8886 022B6 origof
10838 02A56 oror
10839 02A57 orslope
10843 02A5B orv
8500 02134 oscr
248 000F8 oslash ø ø ø
8856 02298 osol
245 000F5 otilde õ õ õ
8855 02297 otimes
10806 02A36 otimesas
246 000F6 ouml ö ö ö
9021 0233D ovbar
8741 02225 par
182 000B6 para
8741 02225 parallel
10995 02AF3 parsim
8741,65024 02225,0FE00 parsl ∥︀ ∥︀
8706 02202 part
1087 0043F pcy п п п
37 00025 percnt % % %
46 0002E period . . .
8240 02030 permil
8869 022A5 perp
8241 02031 pertenk
120109 1D52D pfr 𝔭 𝔭 𝔭
966 003C6 phi φ φ φ
981 003D5 phiv ϕ ϕ ϕ
8499 02133 phmmat
9742 0260E phone
960 003C0 pi π π π
8916 022D4 pitchfork
982 003D6 piv ϖ ϖ ϖ
8463,65024 0210F,0FE00 planck ℏ︀ ℏ︀
8462 0210E planckh
8463 0210F plankv
43 0002B plus + + +
10787 02A23 plusacir
8862 0229E plusb
10786 02A22 pluscir
8724 02214 plusdo
10789 02A25 plusdu
10866 02A72 pluse
177 000B1 plusmn ± ± ±
10790 02A26 plussim
10791 02A27 plustwo
177 000B1 pm ± ± ±
10773 02A15 pointint
120161 1D561 popf 𝕡 𝕡 𝕡
163 000A3 pound £ £ £
8826 0227A pr
10927 02AAF prE
8830 0227E prap
8828 0227C prcue
10927 02AAF pre
8826 0227A prec
8830 0227E precapprox
8828 0227C preccurlyeq
10927 02AAF preceq
8936 022E8 precnapprox
10933 02AB5 precneqq
8936 022E8 precnsim
8830 0227E precsim
8242 02032 prime
8473 02119 primes
10933 02AB5 prnE
8936 022E8 prnap
8936 022E8 prnsim
8719 0220F prod
9006 0232E profalar
8978 02312 profline
8979 02313 profsurf
8733 0221D prop
8733 0221D propto
8830 0227E prsim
8880 022B0 prurel
120005 1D4C5 pscr 𝓅 𝓅 𝓅
968 003C8 psi ψ ψ ψ
8200 02008 puncsp
120110 1D52E qfr 𝔮 𝔮 𝔮
10764 02A0C qint
120162 1D562 qopf 𝕢 𝕢 𝕢
8279 02057 qprime
120006 1D4C6 qscr 𝓆 𝓆 𝓆
8461 0210D quaternions
10774 02A16 quatint
63 0003F quest ? ? ?
8799 0225F questeq
34 00022 quot " " "
8667 021DB rAarr
8658 021D2 rArr
10524 0291C rAtail
10511 0290F rBarr
10596 02964 rHar
10714 029DA race ∽̱
341 00155 racute ŕ ŕ ŕ
8730 0221A radic
10675 029B3 raemptyv
9002 0232A rang
10642 02992 rangd
10661 029A5 range
9002 0232A rangle
187 000BB raquo » » »
8594 02192 rarr
10613 02975 rarrap
8677 021E5 rarrb
10528 02920 rarrbfs
10547 02933 rarrc
10526 0291E rarrfs
8618 021AA rarrhk
8620 021AC rarrlp
10565 02945 rarrpl
10612 02974 rarrsim
8611 021A3 rarrtl
8605 0219D rarrw
8611 021A3 ratail
8758 02236 ratio
8474 0211A rationals
10509 0290D rbarr
12309 03015 rbbrk
125 0007D rbrace } } }
93 0005D rbrack ] ] ]
10636 0298C rbrke
10638 0298E rbrksld
10640 02990 rbrkslu
345 00159 rcaron ř ř ř
343 00157 rcedil ŗ ŗ ŗ
8969 02309 rceil
125 0007D rcub } } }
1088 00440 rcy р р р
10551 02937 rdca
10601 02969 rdldhar
8221 0201D rdquo
8221 0201D rdquor
8627 021B3 rdsh
8476 0211C real
8475 0211B realine
8476 0211C realpart
8477 0211D reals
9645 025AD rect
174 000AE reg ® ® ®
10621 0297D rfisht
8971 0230B rfloor
120111 1D52F rfr 𝔯 𝔯 𝔯
8641 021C1 rhard
8640 021C0 rharu
10604 0296C rharul
961 003C1 rho ρ ρ ρ
1009 003F1 rhov ϱ ϱ ϱ
8594 02192 rightarrow
8611 021A3 rightarrowtail
8641 021C1 rightharpoondown
8640 021C0 rightharpoonup
8644 021C4 rightleftarrows
8652 021CC rightleftharpoons
8649 021C9 rightrightarrows
8605 0219D rightsquigarrow
8908 022CC rightthreetimes
730 002DA ring ˚ ˚ ˚
8787 02253 risingdotseq
8644 021C4 rlarr
8652 021CC rlhar
9137 023B1 rmoust
9137 023B1 rmoustache
10990 02AEE rnmid
62809 0F559 roang
8702 021FE roarr
12315 0301B robrk
12313 03019 ropar
120163 1D563 ropf 𝕣 𝕣 𝕣
10798 02A2E roplus
10805 02A35 rotimes
41 00029 rpar ) ) )
10644 02994 rpargt
10770 02A12 rppolint
8649 021C9 rrarr
120007 1D4C7 rscr 𝓇 𝓇 𝓇
8625 021B1 rsh
93 0005D rsqb ] ] ]
8217 02019 rsquo
8217 02019 rsquor
8908 022CC rthree
8906 022CA rtimes
9657 025B9 rtri
8885 022B5 rtrie
9656 025B8 rtrif
10702 029CE rtriltri
10600 02968 ruluhar
8478 0211E rx
347 0015B sacute ś ś ś
8827 0227B sc
8830 0227E scE
8831 0227F scap
353 00161 scaron š š š
8829 0227D sccue
8829 0227D sce
351 0015F scedil ş ş ş
349 0015D scirc ŝ ŝ ŝ
10934 02AB6 scnE
8937 022E9 scnap
8937 022E9 scnsim
10771 02A13 scpolint
8831 0227F scsim
1089 00441 scy с с с
8901 022C5 sdot
8865 022A1 sdotb
10854 02A66 sdote
8664 021D8 seArr
10533 02925 searhk
8600 02198 searr
8600 02198 searrow
167 000A7 sect § § §
59 0003B semi ; ; ;
10537 02929 seswar
8726 02216 setminus
8726 02216 setmn
10038 02736 sext
120112 1D530 sfr 𝔰 𝔰 𝔰
9839 0266F sharp
1097 00449 shchcy щ щ щ
1096 00448 shcy ш ш ш
8739,65024 02223,0FE00 shortmid ∣︀ ∣︀
8741,65024 02225,0FE00 shortparallel ∥︀ ∥︀
173 000AD shy ­ ­ ­
963 003C3 sigma σ σ σ
962 003C2 sigmav ς ς ς
8764 0223C sim
10858 02A6A simdot
8771 02243 sime
8771 02243 simeq
10910 02A9E simg
10912 02AA0 simgE
10909 02A9D siml
10911 02A9F simlE
8774 02246 simne
10788 02A24 simplus
10610 02972 simrarr
8592,65024 02190,0FE00 slarr ←︀ ←︀
8726,65024 02216,0FE00 smallsetminus ∖︀ ∖︀
10803 02A33 smashp
10724 029E4 smeparsl
8739,65024 02223,0FE00 smid ∣︀ ∣︀
8995 02323 smile
10922 02AAA smt
10924 02AAC smte
10924,65024 02AAC,0FE00 smtes ⪬︀ ⪬︀ ⪬︀
1100 0044C softcy ь ь ь
47 0002F sol / / /
10692 029C4 solb
9023 0233F solbar
120164 1D564 sopf 𝕤 𝕤 𝕤
9824 02660 spades
9824 02660 spadesuit
8741,65024 02225,0FE00 spar ∥︀ ∥︀
8851 02293 sqcap
8851,65024 02293,0FE00 sqcaps ⊓︀ ⊓︀ ⊓︀
8852 02294 sqcup
8852,65024 02294,0FE00 sqcups ⊔︀ ⊔︀ ⊔︀
8847 0228F sqsub
8849 02291 sqsube
8847 0228F sqsubset
8849 02291 sqsubseteq
8848 02290 sqsup
8850 02292 sqsupe
8848 02290 sqsupset
8850 02292 sqsupseteq
9633 025A1 squ
9633 025A1 square
9642 025AA squarf
9642 025AA squf
8594,65024 02192,0FE00 srarr →︀ →︀
120008 1D4C8 sscr 𝓈 𝓈 𝓈
8726,65024 02216,0FE00 ssetmn ∖︀ ∖︀
8902 022C6 sstarf
8902 022C6 star
9733 02605 starf
949 003B5 straightepsilon ε ε ϵ
966 003C6 straightphi φ φ ϕ
8834 02282 sub
8838 02286 subE
10941 02ABD subdot
8838 02286 sube
10947 02AC3 subedot
10945 02AC1 submult
8842 0228A subnE
8842 0228A subne
10943 02ABF subplus ⪿ ⪿ ⪿
10617 02979 subrarr
8834 02282 subset
8838 02286 subseteq
8838 02286 subseteqq
8842 0228A subsetneq
8842 0228A subsetneqq
10951 02AC7 subsim
10965 02AD5 subsub
10963 02AD3 subsup
8827 0227B succ
8831 0227F succapprox
8829 0227D succcurlyeq
8829 0227D succeq
8937 022E9 succnapprox
10934 02AB6 succneqq
8937 022E9 succnsim
8831 0227F succsim
8721 02211 sum
9834 0266A sung
8835 02283 sup
185 000B9 sup1 ¹ ¹ ¹
178 000B2 sup2 ² ² ²
179 000B3 sup3 ³ ³ ³
8839 02287 supE
10942 02ABE supdot
10968 02AD8 supdsub
8839 02287 supe
10948 02AC4 supedot
8835,47 02283,0002F suphsol ⊃/ ⊃/
10967 02AD7 suphsub
10619 0297B suplarr
10946 02AC2 supmult
8843 0228B supnE
8843 0228B supne
10944 02AC0 supplus
8835 02283 supset
8839 02287 supseteq
8839 02287 supseteqq
8843 0228B supsetneq
8843 0228B supsetneqq
10952 02AC8 supsim
10964 02AD4 supsub
10966 02AD6 supsup
8665 021D9 swArr
10534 02926 swarhk
8601 02199 swarr
8601 02199 swarrow
10538 0292A swnwar
223 000DF szlig ß ß ß
8982 02316 target
964 003C4 tau τ τ τ
9140 023B4 tbrk
357 00165 tcaron ť ť ť
355 00163 tcedil ţ ţ ţ
1090 00442 tcy т т т
8411 020DB tdot
8981 02315 telrec
120113 1D531 tfr 𝔱 𝔱 𝔱
8756 02234 there4
8756 02234 therefore
952 003B8 theta θ θ θ
977 003D1 thetav ϑ ϑ ϑ
8776,65024 02248,0FE00 thickapprox ≈︀ ≈︀
8764,65024 0223C,0FE00 thicksim ∼︀ ∼︀
8201 02009 thinsp
8776,65024 02248,0FE00 thkap ≈︀ ≈︀
8764,65024 0223C,0FE00 thksim ∼︀ ∼︀
254 000FE thorn þ þ þ
732 002DC tilde ˜ ˜ ˜
215 000D7 times × × ×
8864 022A0 timesb
10801 02A31 timesbar
10800 02A30 timesd
8749 0222D tint
10536 02928 toea
8868 022A4 top
9014 02336 topbot
10993 02AF1 topcir
120165 1D565 topf 𝕥 𝕥 𝕥
10970 02ADA topfork
10537 02929 tosa
8244 02034 tprime
8482 02122 trade
9653 025B5 triangle
9663 025BF triangledown
9667 025C3 triangleleft
8884 022B4 trianglelefteq
8796 0225C triangleq
9657 025B9 triangleright
8885 022B5 trianglerighteq
9708 025EC tridot
8796 0225C trie
10810 02A3A triminus
10809 02A39 triplus
10701 029CD trisb
10811 02A3B tritime
120009 1D4C9 tscr 𝓉 𝓉 𝓉
1094 00446 tscy ц ц ц
1115 0045B tshcy ћ ћ ћ
359 00167 tstrok ŧ ŧ ŧ
8812 0226C twixt
8606 0219E twoheadleftarrow
8608 021A0 twoheadrightarrow
8657 021D1 uArr
10595 02963 uHar
250 000FA uacute ú ú ú
8593 02191 uarr
1118 0045E ubrcy ў ў ў
365 0016D ubreve ŭ ŭ ŭ
251 000FB ucirc û û û
1091 00443 ucy у у у
8645 021C5 udarr
369 00171 udblac ű ű ű
10606 0296E udhar
10622 0297E ufisht
120114 1D532 ufr 𝔲 𝔲 𝔲
249 000F9 ugrave ù ù ù
8639 021BF uharl
8638 021BE uharr
9600 02580 uhblk
8988 0231C ulcorn
8988 0231C ulcorner
8975 0230F ulcrop
9720 025F8 ultri
363 0016B umacr ū ū ū
168 000A8 uml ¨ ¨ ¨
371 00173 uogon ų ų ų
120166 1D566 uopf 𝕦 𝕦 𝕦
8593 02191 uparrow
8597 02195 updownarrow
8639 021BF upharpoonleft
8638 021BE upharpoonright
8846 0228E uplus
965 003C5 upsi υ υ υ
965 003C5 upsilon υ υ υ
8648 021C8 upuparrows
8989 0231D urcorn
8989 0231D urcorner
8974 0230E urcrop
367 0016F uring ů ů ů
9721 025F9 urtri
120010 1D4CA uscr 𝓊 𝓊 𝓊
8944 022F0 utdot
361 00169 utilde ũ ũ ũ
9653 025B5 utri
9652 025B4 utrif
8648 021C8 uuarr
252 000FC uuml ü ü ü
10663 029A7 uwangle
8661 021D5 vArr
10984 02AE8 vBar
10985 02AE9 vBarv
8872 022A8 vDash
8894 022BE vangrt
603 0025B varepsilon ɛ ɛ ϵ
1008 003F0 varkappa ϰ ϰ ϰ
8709 02205 varnothing
981 003D5 varphi ϕ ϕ ϕ
982 003D6 varpi ϖ ϖ ϖ
8733 0221D varpropto
8597 02195 varr
1009 003F1 varrho ϱ ϱ ϱ
962 003C2 varsigma ς ς ς
8842,65024 0228A,0FE00 varsubsetneq ⊊︀ ⊊︀ ⊊︀
8842,65024 0228A,0FE00 varsubsetneqq ⊊︀ ⊊︀ ⫋︀
8843,65024 0228B,0FE00 varsupsetneq ⊋︀ ⊋︀ ⊋︀
8843,65024 0228B,0FE00 varsupsetneqq ⊋︀ ⊋︀ ⫌︀
977 003D1 vartheta ϑ ϑ ϑ
8882 022B2 vartriangleleft
8883 022B3 vartriangleright
1074 00432 vcy в в в
8866 022A2 vdash
8744 02228 vee
8891 022BB veebar
8794 0225A veeeq
8942 022EE vellip
124 0007C verbar | | |
124 0007C vert | | |
120115 1D533 vfr 𝔳 𝔳 𝔳
8882 022B2 vltri
8836 02284 vnsub ⊂⃒
8837 02285 vnsup ⊃⃒
120167 1D567 vopf 𝕧 𝕧 𝕧
8733 0221D vprop
8883 022B3 vrtri
120011 1D4CB vscr 𝓋 𝓋 𝓋
8842,65024 0228A,0FE00 vsubnE ⊊︀ ⊊︀ ⫋︀
8842,65024 0228A,0FE00 vsubne ⊊︀ ⊊︀ ⊊︀
8843,65024 0228B,0FE00 vsupnE ⊋︀ ⊋︀ ⫌︀
8843,65024 0228B,0FE00 vsupne ⊋︀ ⊋︀ ⊋︀
10650 0299A vzigzag
373 00175 wcirc ŵ ŵ ŵ
10847 02A5F wedbar
8743 02227 wedge
8793 02259 wedgeq
8472 02118 weierp
120116 1D534 wfr 𝔴 𝔴 𝔴
120168 1D568 wopf 𝕨 𝕨 𝕨
8472 02118 wp
8768 02240 wr
8768 02240 wreath
120012 1D4CC wscr 𝓌 𝓌 𝓌
8898 022C2 xcap
9711 025EF xcirc
8899 022C3 xcup
9661 025BD xdtri
120117 1D535 xfr 𝔵 𝔵 𝔵
62843 0F57B xhArr
62840 0F578 xharr
958 003BE xi ξ ξ ξ
62841 0F579 xlArr
62838 0F576 xlarr
62845 0F57D xmap
8955 022FB xnis
8857 02299 xodot
120169 1D569 xopf 𝕩 𝕩 𝕩
8853 02295 xoplus
8855 02297 xotime
62842 0F57A xrArr
62839 0F577 xrarr
120013 1D4CD xscr 𝓍 𝓍 𝓍
8852 02294 xsqcup
8846 0228E xuplus
9651 025B3 xutri
8897 022C1 xvee
8896 022C0 xwedge
253 000FD yacute ý ý ý
1103 0044F yacy я я я
375 00177 ycirc ŷ ŷ ŷ
1099 0044B ycy ы ы ы
165 000A5 yen ¥ ¥ ¥
120118 1D536 yfr 𝔶 𝔶 𝔶
1111 00457 yicy ї ї ї
120170 1D56A yopf 𝕪 𝕪 𝕪
120014 1D4CE yscr 𝓎 𝓎 𝓎
1102 0044E yucy ю ю ю
255 000FF yuml ÿ ÿ ÿ
378 0017A zacute ź ź ź
382 0017E zcaron ž ž ž
1079 00437 zcy з з з
380 0017C zdot ż ż ż
8488 02128 zeetrf
950 003B6 zeta ζ ζ ζ
120119 1D537 zfr 𝔷 𝔷 𝔷
1078 00436 zhcy ж ж ж
8669 021DD zigrarr
120171 1D56B zopf 𝕫 𝕫 𝕫
120015 1D4CF zscr 𝓏 𝓏 𝓏