
Thoughts on Validating RDF Healthcare Data
2013 W3C RDF Validation Workshop

David Booth
KnowMED, Inc.

Healthcare data often involves combining several datasets from different sources – any of which can
contain source-specific data errors that are (in principle at least) often detectable. This position paper
briefly outlines some of the features I'd like to see in RDF validation tools.

1. SPARQL-based framework. I favor SPARQL-based approaches because there is a large
management economy that is obtained by using a widely used common-denominator tool. I am
most drawn toward approaches that either build on SPARQL as a component, or can be used
from SPARQL (such as SPARQL extension functions).

2. Validation pipelines. A single SPARQL ASK or CONSTRUCT query can be overly complex
and difficult to debug. Often it is simpler to write a series of SPARQL operations – such as
INSERT operations that operate on named graphs – to create intermediate forms of the data that
are easier to check than the original data. At present there does not seem to be a standard way
to specify a series of SPARQL Update operations followed by a SPARQL Query. (The RDF
Pipeline Framework (http://rdfpipeline.org/) is one approach that can be used, but certainly not
the only one.) It would be helpful to have standard ways to define validation pipelines.

3. Better URI pattern matching and munging. RDF applications routinely generate new URIs
from natural keys in the data. It would be nice to have easier mechanisms for checking URI
patterns and detecting misspellings.

4. Validation like automated regression testing. In any serious software development effort it is
essential to have a regression test suite that grows as the software evolves, features are added
and bugs are fixed. Since RDF is by nature a very unconstrained language, validation becomes
similarly essential. Therefore, I prefer validation approaches that are amenable to modularity,
such that new, independent tests can be conveniently added without affecting existing tests,
much as one might add a new regression test when a feature is added. To be concrete: for ease
of automation and maintenance I prefer an approach in which each validation test (or group of
related tests) can be naturally expressed in a separate file and run independently from other
validation tests.

5. Operational versus declarative. For very simple tests (such as simple pattern matching) a
declarative style can be convenient. But in my experience, for more complex tests regular
programmers are usually more comfortable with an operational style ("Do A first, then B, then
C, and then the result should be X") than a declarative style. I note that SPARQL Update
operations are amenable to an operational style, as a series of updates can be specified.

http://rdfpipeline.org/

