
OSLC Resource Shape: A Linked Data Constraint Language

Achille Fokoue Arthur Ryman
Research Staff Member Distinguished Engineer
IBM Research IBM

Introduction

Linked Data has emerged as a principled, flexible, open standard based approach to share, integrate
and link heterogenous and disparate data across tools, data silos within an organization, and across
organizations. It leverages well-established web architecture concepts (e.g., resources identified by
URI, and HTTP communication protocol), and introduces RDF as its fundamental data model and
SPARQL as its query language. While much attention has been devoted to the use of Linked Data
principles to share and access information in the growing Web of Data1, at IBM, we have successfully
relied on the Linked Data approach as an architectural style for addressing the issue of integrating a
suite of applications [1].

In the context of Linked Data for Application Integration, a key challenge that we had to address was
the lack of any standard mechanism to validate RDF data. Standard web ontology languages (e.g.,
RDF Schema and OWL) have been well documented [2, 3, 4, 5, 6] as inadequate as validation and
integrity constraint languages for RDF. They were primarily designed for distributed environments
where any single information provider or consumer is only assumed to have partial information. For
example, their Open World Assumption (OWA2) semantics and the absence of Unique Name
Assumption (UNA3) trigger the inference of new facts where the Closed World Assumption (CWA) of
traditional constraint languages (e.g., XML Schema or RelaxNG for XML, Data Definition Language
for relational data, etc) would directly trigger constraint violations.

In this paper, we start by motivating the need for a constraint language for RDF data. We then present
some important requirements for such a language. Finally, we briefly introduce OSLC Resource Shape,
our solution for addressing RDF data validation needs that was developed in context of using Linked
Data for application integration.

Motivation and Requirements for a Linked Data Constraint Language

A Linked Data constraint language serves two important functions. First, it provides a contract
language needed to define the structure and constraints on the input and output of REST service
operations. Second, it can be used as metadata by other tools (e.g. query builders, form builders, test
case generators, etc).

Defining REST Linked Data Interfaces

Linked Data fuses REST and RDF by requiring that resources be identified with dereferenceable HTTP

1 http://linkeddata.org/
2 In OWA, as opposed to Closed World Assumption (CWA), a statement that cannot be proven to hold based solely on

partial information available to an agent is never assumed, by this agent, to be false.
3 The absence of UNA implies that two different URIs could be used to refer to the same resource.

URIs and that HTTP clients are able to get RDF representations of resources.

From a REST perspective, the definition of the content and structure of RDF payloads (HTTP request
or response) is a key part of the definition of the REST service interface. It is sound engineering
practice to define interfaces between components in a system. The interface definition defines the
contract between the provider and consumer of a component. For software systems, the main part of the
interface definition is a precise specification of the inputs and outputs. Type definition languages are
used for this purpose. Such constraint language is needed in Linked Data to formally describe the
structure of RDF graphs produced by a provider so that a consumer can automatically check whether
RDF graphs it received conform to the interface contract.

Metadata for Tools Handling RDF Graphs

As for more traditional type definition languages (e.g., XML Schema, Relational Data Definition
Language), constraints on RDF graphs can serve as metadata that can be used by various tools to
achieve different goals. Some of the tools include: query and form builders and test case generators.
They all need to exploit RDF graph constraints to understand, for example, the expected properties and
their allowed values in order to achieve their goal: e.g.,

1. assist users in the formulation of their queries

2. generate appropriate forms in an editor, and

3. automatically generate test cases based on the expected structure of the input/ouput of an
application, tool, or REST service operation.

Requirements for a Linked Data Constraint Language

Using a Linked Data constraint language for defining REST Linked Interfaces and metadata dictates
two important requirements on the constraint language:

• It must be amenable to efficient implementation

• It must be expressed at a high level of abstraction to be understandable by both humans and
machines

First, since the validation of RDF graphs is a key and frequent operation performed by both data
consumers and producers, a RDF constraint language should be amenable to very efficient
implementation, preferably on top of existing technologies. In particular, in the proposed constraint
language described in the next section, this requirement for efficient implementation was fulfilled by a
translation of all constraints into simple SPARQL ASK queries that can be efficiently answered by
existing SPARQL engines.

Second, the constraint language has to be expressed at a high enough level of abstraction so that
constraints can be successfully used as metadata easily understandable by both humans and machines.
On the one hand, developers need to understand the REST interface constraints in order to develop
clients and providers of a Linked Data REST API. On the other hand, tools (e.g., query and form
builders, test case generators) need to understand, without complex static analysis, the expected
structure of RDF graphs. This requirement explains why, although SPARQL ASK queries can be used
to check whether RDF graphs conform to specific constraints, SPARQL language itself is not
appropriate as the constraint language since it is too low level.

OSLC Resource shape

The Open Services for Lifecycle Collaboration (OSLC) has proposed the Resource Shape specification
[7] for specifying constraints on RDF data. This proposal, which we advocate in this paper as a viable
solution for a constraint language for RDF, fulfills the requirements highlighted in the previous
section.

A resource shape specification lists the properties that are expected or required in a graph, their
occurrence, range, allowed values, and so forth. A shape specification determines whether a given
graph is valid or invalid. A shape checker could be implemented as a set of SPARQL ASK queries on
the graph. The SPARQL ASK query corresponding to a shape constraint captures the pattern(s) that is
(are) forbidden in valid RDF graphs. If all queries return false, the graph is valid; otherwise, it is
invalid because the constraints corresponding to the ASK queries returning true are not satisfied.

We illustrate some important aspect of the Resource Shape language on a simple example (the formal
specification of the language is available at [7]). Consider a simple web application that hosts resources
about change requests. We will use the OSLC oslc_cm:ChangeRequest class to define the class of
change requests. Assume that there is a REST service where we can POST HTTP requests to create
new oslc_cm:ChangeRequest resources. The REST service looks at the HTTP request, and if it contains
an oslc_cm:ChangeRequest resource, it will create a new resource and copy the properties from the
HTTP request to it. The following HTTP POST request body should succeed:

HTTP POST changeRequest.ttl
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix oslc_cm: <http://open-services.net/ns/cm#> .

<http://example.com/resource> a oslc_cm:ChangeRequest ;
 dcterms:title "Null pointer exception in web ui" ;
 oslc_cm:status "Submitted" .

In the example, it is required that when a new resource is created, it must have exactly one dcterms:title
property and zero or one oslc_cm:status property. These constraints are expressed in the simplified
shape resource shown below (changeRequest-shape.ttl):

OSLC Resource Shape changeRequest-shape.ttl
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix oslc: <http://open-services.net/ns/core#> .
@prefix oslc_cm: <http://open-services.net/ns/cm#> .

@base <http://example.com/shape/oslc-change-request> .

<> a oslc:ResourceShape ;
 dcterms:title "Creation shape of OSLC Change Request" ;
 oslc:describes oslc_cm:ChangeRequest ;
 oslc:property <#dcterms-title>, <#oslc_cm-status> .

<#dcterms-title> a oslc:Property ;
 oslc:propertyDefinition dcterms:title ;
 oslc:occurs oslc:Exactly-one .

<#oslc_cm-status> a oslc:Property ;
 oslc:propertyDefinition oslc_cm:status ;

 oslc:occurs oslc:Zero-or-one .

This shape document specifies constraints to be applied as preconditions to creating
oslc_cm:ChangeRequest resource through HTTP POST. It uses the oslc:occurs property to specify the
occurrence constraints of the dcterms:title and oslc_cm:status properties. Specifying the occurrence of
a property as either oslc:Exactly-one or oslc:Zero-or-one constrains the property to be functional.

As mentioned above, each constraint can be expressed as a SPARQL ASK query that captures patterns
forbidden in the RDF data. For example, the following query, ask-oslc_cm-status-occurs.rq, checks the
occurrence of the oslc_cm:status property:

SPARQL Query ask-oslc_cm-status-occurs.rq
prefix oslc_cm: <http://open-services.net/ns/cm#>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

ASK
{
 ?resource rdf:type oslc_cm:ChangeRequest.
 ?resource oslc_cm:status ?status1.
 ?resource oslc_cm:status ?status2.
 FILTER (?status1 != ?status2)
}

The above SPARQL ASK query returns true (meaning an invalid pattern has been detected in the RDF
data) if and only if there is at least one oslc_cm:ChangeRequest that specifies two or more distinct
values for the property oslc_cm:status.

Likewise, the following query, ask-dcterms-title.rq, checks the occurrence of the dcterms-title property,
and it returns true if and only if there is a oslc_cm:ChangRequest that does not specify exactly one
dcterms:title:

SPARQL Query ask-dcterms-occurs.rq
prefix oslc_cm: <http://open-services.net/ns/cm#>
prefix dcterms: <http://purl.org/dc/terms/>
prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

ASK
{
 ?resource rdf:type oslc_cm:ChangeRequest.
 {
 ?resource dcterms:title ?title1.
 ?resource dcterms:title ?title2.
 FILTER (?title1 != ?title2)
 }
 UNION
 {
 FILTER NOT EXISTS { ?resource dcterms:title ?title}

 }

}

The OSLC Resource Shape specification enables the expression of common constraints in addition to
occurrence constraints (see [7] for more details). Although the semantic of each constraint can be
expressed in terms of a suitable SPARQL ASK query, implementations of the specification are not
required to use SPARQL to check constraints.

Conclusion

In this paper, we have motived the need for a RDF constraint language for defining REST Linked Data
interfaces and metadata that can be leveraged by tools handling RDF data. We have also presented key
requirements on such language; namely, its amenability to efficient implementation (e.g., via
translation to SPARQL ASK queries), and its ability to express constraints at a high level of abstraction
so that they are easily understandable by both humans and machines. Finally, we advocate the use of
the Open Services for Lifecycle Collaboration (OSLC) Resource Shape specification [7] as a viable
solution for a RDF constraint language.

References:

[1] Arnaud Le Hors, Martin Nally, Steve Speicher: Using read/write Linked Data for Application
Integration – Towards a Linked Data Basic Profile. LDOW.
http://events.linkeddata.org/ldow2012/papers/ldow2012-paper-04.pdf
[2] Arthur Ryman: Linked Data Interfaces. DeveloperWorks.
http://www.ibm.com/developerworks/rational/library/linked-data-oslc-resource-shapes/
[3] Arthur Ryman, Arnaud Le Hors, Steve Speicher: OSLC Resource Shape
A language for defining constraints on Linked Data. LDOW.
http://events.linkeddata.org/ldow2013/papers/ldow2013-paper-02.pdf
[4] Jiao Tao, Evren Sirin, Jie Bao, Deborah L. McGuinness: Extending OWL with Integrity
Constraints. Description Logics 2010. http://ceur-ws.org/Vol-573/paper_21.pdf
[5] Jiao Tao: Adding Integrity Constraints to the Semantic Web for Instance Data Evaluation.
International Semantic Web Conference (2) 2010: 330-337.
http://rd.springer.com/chapter/10.1007%2F978-3-642-17749-1_24
[6] Jiao Tao, Evren Sirin, Jie Bao, Deborah L. McGuinness: Integrity Constraints in OWL. AAAI 2010.
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1931
[7] OSLC Resource Shape: http://open-services.net/bin/view/Main/OSLCCoreSpecAppendixA?
sortcol=table;up=#oslc_ResourceShape_Resource

http://events.linkeddata.org/ldow2012/papers/ldow2012-paper-04.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1931
http://rd.springer.com/chapter/10.1007%2F978-3-642-17749-1_24
http://ceur-ws.org/Vol-573/paper_21.pdf
http://events.linkeddata.org/ldow2013/papers/ldow2013-paper-02.pdf
http://www.ibm.com/developerworks/rational/library/linked-data-oslc-resource-shapes/

	OSLC Resource Shape: A Linked Data Constraint Language
	Introduction
	Motivation and Requirements for a Linked Data Constraint Language
	Defining REST Linked Data Interfaces
	Metadata for Tools Handling RDF Graphs
	Requirements for a Linked Data Constraint Language

	OSLC Resource shape
	Conclusion
	References:

