
Using SPARQL to Validate Open Annotation RDF Graphs

A Position Paper Submitted to the
RDF Validation Workshop: Practical Assurances for Quality RDF Data

10-11 September 2013

Anna Gerber (agerber@itee.uq.edu.au)1

Timothy W. Cole (t-cole3@illinois.edu)

2

David Lowery (lowery@cs.umb.edu)

3

Community Draft 2 of the Open Annotation (OA) Specification4 was released in February 2013
by the W3C Open Annotation Community Group.5 This specification describes a RDF-based
data model and a core ontology6 for describing annotations of Web Resources. The OA
Specification is designed to facilitate the sharing of annotations and to facilitate the emergence of
a Web and Resource-centric interoperable annotation environment that allows leveraging
annotations across the boundaries of annotation clients, annotation servers, and content
collections. The OA Ontology is modest in scope and in numbers of classes (19), properties (23)
and explicitly defined concepts (12 Named Individuals). Existing classes and properties are used
(imported) where possible; in particular the OA ontology imports RDFS, the SKOS core, and
W3C PROV. The OA Specification and associated OA Ontology mandate7

 that all compliant
annotation RDF instances include several classes and properties. Other classes and properties are
recommended, and still others are optional. As illustrated further below, the specification
requires that some optional classes and properties be used in concert -- for example, the use of
the SpecificResource class requires the use of the hasSource property. Cardinality constraints
are also imposed -- for example, a given SpecificResource instance in an annotation graph must
appear as the subject of exactly one single hasSource predicate.

Since the release of the OA Specification in February, members of the OA Community Group,
led by Anna Gerber and Jane Hunter at the University of Queensland, have been exploring and
experimenting with ways to validate conformance to the OA Specification. We began by
reviewing and refining validation goals and requirements. We wanted a reasonably lightweight
approach that was modular, leveraged existing tools where possible, and reported results in a
manner that would facilitate learning about OA requirements and best practices. In other words,
given the newness of the OA Specification, we assumed that implementers would appreciate
validation results that reported each instance of a missing or incorrectly used class or property,

1 ITEE eResearch Group, The University of Queensland
2 University Library and Graduate School of Library & Information Science, University of Illinois at UC
3 Harvard University Herbaria and Computer Science Department, University of Massachusetts at Boston
4 http://www.openannotation.org/spec/core/
5 http://www.w3.org/community/openannotation/
6 http://www.w3.org/ns/oa# , http://www.w3.org/ns/oa.rdf , http://www.w3.org/ns/oa.ttl
7 The terminology used follows RFC 2119 (http://www.ietf.org/rfc/rfc2119).

http://www.openannotation.org/spec/core/�
http://www.openannotation.org/spec/core/�
http://www.w3.org/community/openannotation/�
http://www.w3.org/ns/oa�
http://www.w3.org/ns/oa.rdf�
http://www.w3.org/ns/oa.ttl�
http://www.ietf.org/rfc/rfc2119�

directly referencing the relevant section of the OA Specification. In practical terms we wanted to
isolate and capture the rules of the OA Specification and Ontology and be able to test for
compliance against each rule using an architecture that would make it easy for other developers
to extend our validation tool with their own community-based rules for annotation and
supplemental annotation description ontologies. With these goals in mind, cognizant of the
modest size and scope of the OA Ontology, and looking at several successful implementations in
other domains, we settled early on a SPARQL-based validation approach.

In pursuing a rules / SPARQL-based approach to validation we found both a number of other
projects to inspire us and a foundation of tools on which we could design and build our
SPARQL-based OA validator. In particular we were influenced by tools emerging from software
development contexts, like Cucumber8 and the VIATRA2 / EMF IncQuery work on ontology
validation by incremental model query techniques.9 We also looked closely at a broad range of
validation systems and tools, both old and new, such as Schemarama (2001)10 and the more
recent sparql-check11 (reworking Schemarama 2), Stardog ICV (validating RDF with OWL
Integrity Constraints),12 the W3C SPIN modeling vocabulary13 supporting the use of SPARQL to
specify rules and logic constraints, SPARQL for SKOS integrity constraints14 and Pellet.15 And
we found several papers in the literature informative for our needs, notably an early paper by
Viho Raatikka and Eero Hyvönen16 and two papers by Evren Sirin, Jiao Tao, et al.17 One
software library that our implementation made direct use of was the rdf2go software library.18

Implementation -- the Lorestore OA Repository and Validator

Building on this prior art and on our design objectives, we have implemented a SPARQL-based
OA validation service19 that can be used remotely or installed locally. This OA validation service
is implemented in Java and runs as a component of the UQ ITEE eResearch Lorestore annotation
repository service. The source code for Lorestore, including the OA validation service, is
available from GitHub.20

8

 The Lorestore OA validator is available as a Web Service. The tool can
also be run interactively via an HTML Web form (Figure 1). An RDF instance can be posted to
the service (in any of several serializations -- JSON-LD, RDF/XML, TriX, Turtle, TriG), with
validation results returned in JSON.

http://cukes.info/
9 http://incquery.net//publications/trainbenchmark
10 http://swordfish.rdfweb.org/discovery/2001/01/schemarama/
11 https://github.com/ldodds/sparql-check
12 http://stardog.com/docs/sdp/ , http://stardog.com/docs/sdp/icv-specification.html
13 http://www.w3.org/Submission/spin-modeling/
14 http://www.proxml.be/users/paul/weblog/40127/SPARQL_for_SKOS_integrity_constraints.html
15 http://clarkparsia.com/pellet/icv/ ,
16 http://www.seco.tkk.fi/publications/2002/raatikka-hyvonen-ontology-based-semantic-metadata-validation-2002.pdf
17 http://clarkparsia.com/files/pdf/ic-owled09.pdf , http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1931/2229
18 http://semanticweb.org/wiki/RDF2Go ,
19 http://austese.net/lorestore/validate.html
20 https://github.com/uq-eresearch/lorestore , https://github.com/uq-eresearch/lorestore/blob/master/src/main/java/net/metadata/op
enannotation/lorestore/servlet/rdf2go/OAValidationHandler.java

http://cukes.info/�
http://incquery.net/publications/trainbenchmark�
http://swordfish.rdfweb.org/discovery/2001/01/schemarama/�
https://github.com/ldodds/sparql-check�
http://stardog.com/docs/sdp/�
http://stardog.com/docs/sdp/icv-specification.html�
http://www.w3.org/Submission/spin-modeling/�
http://www.proxml.be/users/paul/weblog/40127/SPARQL_for_SKOS_integrity_constraints.html�
http://clarkparsia.com/pellet/icv/�
http://www.seco.tkk.fi/publications/2002/raatikka-hyvonen-ontology-based-semantic-metadata-validation-2002.pdf�
http://clarkparsia.com/files/pdf/ic-owled09.pdf�
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1931/2229�
http://semanticweb.org/wiki/RDF2Go�
http://austese.net/lorestore/validate.html�
https://github.com/uq-eresearch/lorestore�
https://github.com/uq-eresearch/lorestore/blob/master/src/main/java/net/metadata/openannotation/lorestore/servlet/rdf2go/OAValidationHandler.java�
https://github.com/uq-eresearch/lorestore/blob/master/src/main/java/net/metadata/openannotation/lorestore/servlet/rdf2go/OAValidationHandler.java�

Figure 1: HTML Form interface to the OA Validation Service

A total of 55 rules have been defined representing the constraints and requirements of the OA
Specification and Ontology. For each rule we have defined a SPARQL query to check
compliance. Because many of the OA classes and properties are optional, not all rules are
applicable to all annotation instances. In addition to the SPARQL query to test for rule
compliance, a separate, pre-condition SPARQL query has also been defined for each rule. This
pre-condition query, which returns a Boolean True/False result, determines if the rule is
applicable (and thereby determines if the primary SPARQL query associated with the rule should
be run). Each pair of SPARQL queries is linked to the relevant section of the OA Specification
where the requirement or constraint being tested is articulated. A severity (either 'error' or 'warn')
is also associated with each rule according to whether the OA Specification requirement or
constraint is expressed using 'MUST' or 'SHOULD.' The OA Specification section number, a
description of the requirement or constraint, and a pre-condition message is also associated with
each rule. The pre-condition message text is used to construct a 'not applicable' message to
display if a given rule is not applicable to a particular annotation instance. Along with the 'status'
(i.e., pass, fail, skip), and ‘result’ (non-compliant resources in the case of validation failure) of
the SPARQL-based testing of the rule, all of these elements for each rule are returned to the
client or user invoking the validation check. Figure 2 illustrates a typical JSON return for the
check that the annotation being validated include at least one 'hasTarget' triple.

{
 "ref": "2.1.0. (5) Body and Target Resources",
 "url": "http://www.openannotation.org/spec/core/core.html#BodyTarget",
 "description": "There MUST be 1 or more oa:hasTarget relationships associated
with an Annotation.",
 "severity": "error",
 "preconditionMessage": "No Annotations identified",
 "precondition": "PREFIX oa: <http://www.w3.org/ns/oa#> ASK WHERE
{{?annotation oa:hasTarget ?t}UNION {?annotation a oa:Annotation}}",
 "query": "PREFIX oa: <http://www.w3.org/ns/oa#> SELECT ?annotation WHERE {
?annotation a oa:Annotation . FILTER(NOT EXISTS { ?annotation oa:hasTarget ?t
}) }",
 "status": "pass",
 "result": ""
}

Figure 2: JSON Return for a Rule (1 of 55)

A Community-Specific Implementation

The OA Specification and Ontology is designed to be extended as necessary to meet the needs of
specific communities. FilteredPush(FP)21

 is a platform for deploying actionable annotations of
distributed, mutable biodiversity data. Its annotations are based on OA, with a small number of
extensions aimed at giving change guidance to data publishers that receive annotations
describing incomplete or erroneous data. Specialized FP annotations correspond to particular
domain business logic operations (insert determination, update georeference, etc). Accordingly,
FP validation requirements focus on insuring that consuming and producing software agree that
sufficient and appropriate RDF has been delivered to allow the consumer to take appropriate
action. FP adopted a similar validation strategy to LoreStore's, but its SPARQL queries serve
slightly more complex validation purposes, accordingly with slightly different structure.

Validity depends on sets of rules whose structure depends not only on OA rules, but also on the
producer's expectations of the consumer's actions, couched about entities in the domain
vocabularies. One example of how we are using SPARQL rules to determine whether or not an
annotation is a valid instance for the purposes of FP is by defining queries for valid combinations
of body type and expectation. For example, a body typed as a dwc:Identification22

 that is paired
with an Expectation of Update has different requirements for validity than one paired with an
Expectation of Insert. There are also invalid pairings of expectation and body that must be dealt
with, such as an expectation of Solve_With_More_Data paired with a body typed as a
dwc:Identification, which is not a valid annotation according to our rules as there is no business
logic operation that corresponds to this combination.

Applicability pre-conditions for each rule set, akin to LoreStore’s, test applicability of the entire
rule set. These could even comprise run-time validation rules, changed by mutual agreement of

21 http://filteredpush.sourceforge.net/ , http://wiki.filteredpush.org/
22 'dwc:' is a reference to the Darwin Core Namespace as defined by http://rs.tdwg.org/dwc/terms/

http://filteredpush.sourceforge.net/�
http://wiki.filteredpush.org/�
http://rs.tdwg.org/dwc/terms/�

the network nodes. The structure of the set of rule sets is expressed in XML carrying references
to the SPARQL queries, and this structure is constrained by an XML-Schema. Rule sets end with
an optional parse rule that takes the form of a select query. The names of the variable bindings in
the SPARQL are available in the configuration of the consumer. Thus, FP validation rule sets
also ensure that a parsed annotation provides the fields required by the validity tests.

Interest in the RDF Validation Workshop

The Lorestore OA validator service was implemented to facilitate and encourage adoption of the
OA Specification. Our goal is to provide a tool which makes it easy to validate conformance to
the OA Specification and Ontology documents. We want a tool that can be used by a developer
from a Web form, but could also be used for programmatic validation, both via UQ’s Web
Service running on the Australian NeCTAR research cloud, and in a local context (i.e., by
deploying Lorestore locally). As illustrated by the FP community-specific validation example,
an important next step is making it easier to extend the baseline Lorestore OA validator to test
for community-specific annotation requirements and constraints. Community-specific
requirements and constraints require modifying and/or augmenting the 55 rules implemented in
the baseline OA Lorestore validator. What are the ways to make that easier to do and document
(while staying in sync as the baseline OA validator is updated)?

We are interested in the RDF Validation Workshop in order to learn more about trends and the
current state of RDF Validation tools and services and in order to better understand how we can
make the Lorestore OA validator more useful and flexible. We want to compare our assumptions
and design criteria with what others are using or developing. We have found the SPARQL-based
validation approach efficient for our goals -- and are happy to share why we think it a good and
useful approach to RDF validation -- but we also would like to learn more about ways to make
our SPARQL-based approach more flexible and about other perspectives, trade-offs and
alternatives that others have identified. We anticipate that we will learn of ways we can improve
the quality, correctness and completeness of our existing OA validator. For example, we are
considering the option of depositing the SPARQL for our baseline 55 OA validation rules into a
separate git repository on github as a way to facilitate community extension. Would this be a
good strategy? Have others tried this? Git forking works well for template projects which are
designed to be customized. We anticipate it could work well for validation rules too.
Communities could fork the base 55 rules to modify or add domain-specific rules, and any
updates or changes to the base rules made over time could be merged back into the forks from
upstream. Git keeps a full revision history and makes it possible to revert or override changes,
allowing full control over this process. We also anticipate learning more about alternatives to
SPARQL-based validation, with an eye to potentially extending and enhancing our existing tool
and/or developing additional or alternative OA validation systems.

